Advertisements
Advertisements
Question
If `bar"a" = hat"i" + hat"j" + hat"k" "and" bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c" "and" bar"a".bar"b" = 3`
Solution
Given: `bar"a" = hat"i" + hat"j" + hat"k" , bar"c" = hat"j" - hat"k"`
Let `bar"b" = "x"hat"i" + "y"hat"j" + "z"hat"k"`
Then `bar"a".bar"b" = 3` gives
`(hat"i" + hat"j" + hat"k").("x"hat"i" + "y"hat"j" + "z"hat"k") = 3`
∴ (1)(x) + (1)(y) + (1)(z) = 3
Also, x + y + z = 3 ...(1)
Also, `bar"c" = bar"a" xx bar"b"`
∴ `hat"j" - hat"k" = |(hat"i", hat"j" , hat"k"),(1,1,1),("x","y","z")|`
`= ("z - y")hat"i" - ("z - x")hat"j" + ("y - x")hat"k"`
`= ("z - y")hat"i" + ("x - z")hat"j" + ("y - x")hat"k"`
By equality of vectors,
z - y = 0 ...(2)
x - z = 1 .....(3)
y - x = - 1 ...(4)
From (2), y = z.
From (3), x = 1 + z
Substituting these values of x and y in (1), we get
1 + z + z + z = 3
∴ z = `2/3`
∴ y = z = `2/3`
∴ x = 1 + z = `1 + 2/3 = 5/3`
∴ `bar"b" = 5/3hat"i" + 2/3hat"j" + 2/3hat"k"`
i.e. `bar"b" = 1/3(5hat"i" + 2hat"j" + 2hat"k")`
APPEARS IN
RELATED QUESTIONS
Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk`, `barv = hati + 2hatj - 2hatk`.
If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`
Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.
If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`
If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`
If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.
Find `bar"u".bar"v"` if `|bar"u"| = 2, |bar"v"| = 5, |bar"u" xx bar"v"| = 8`
Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`
If `bar"a" = hat"i" - 2hat"j" + 3hat"k"` , `bar"b" = 4hat"i" - 3hat"j" + hat"k"` , `bar"c" = hat"i" - hat"j" + 2hat"k"` verify that `bar"a"xx(bar"b" + bar"c") = bar"a" xx bar"b" + bar"a" xx bar"c"`
Find the area of the parallelogram whose adjacent sides are `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`
Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.
If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.
If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a" "and" bar"b"`.
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1
Prove that the two vectors whose direction cosines are given by relations al + bm + cn = 0 and fmn + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`
If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.
The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______
If the line r = `(hat"i" - 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" + 2hat"k")` is parallel to the plane `"r" * (3hat"i" - 2hat"j" + "m"hat"k")` = 10, then the value of m is ______.
The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______
Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.
If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.
If `veca, vecb, vecc` are vectors such that `[(veca, vecb, vecc)]` = 4, then `[(veca xx vecb, vecb xx vecc, vecc xx veca)]` = ______.
Find two unit vectors each of which is perpendicular to both `baru and barv, "where" baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru "and" barv`, where `baru =2hati + hatj - 2hatk, barv =hati + 2hatj - 2hatk `
Find two unit vectors each of which is perpendicular to both
`baru "and" barv, "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `\overline "u" and \overline "v",` where ` \overline "u" = 2hati + hatj - 2hatk, \overline "v" = hati + 2hatj - 2hatk`
If a vector has direction angles 45° and 60° find the third direction angle.
Find the direction ratios of a line perpendicular to both the lines whose direction ratios are 3, –2, 1 and 2, 4, –2
Find two unit vectors each of which is perpendicular to both `baru and barv`, where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv , "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj -2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`