Advertisements
Advertisements
Question
Find the area of the parallelogram whose adjacent sides are `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`
Solution
Given: `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`
∴ `bar"a" xx bar"b" = |(hat"i",hat"j",hat"k"),(2,-2,1),(1,-3,-3)|`
`= (6 + 3)hat"i" - (- 6 - 1)hat"j" + (- 6 + 2)hat"k"`
`= 9hat"i" + 7hat"j" - 4hat"k"`
`|bar"a" xx bar"b"| = sqrt(9^2 + 7^2 + (- 4)^2) = sqrt(81 + 49 + 16) = sqrt146`
Area of the parallelogram whose adjacent sides are `bar"a"` and `bar"b" = sqrt146` sq units.
APPEARS IN
RELATED QUESTIONS
If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`
Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.
Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.
Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1).
If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`
If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`
If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.
Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`
Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.
If `bar"a" = hat"i" + hat"j" + hat"k" "and" bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c" "and" bar"a".bar"b" = 3`
If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a" "and" bar"b"`.
Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β
Prove that the two vectors whose direction cosines are given by relations al + bm + cn = 0 and fmn + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`
If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.
The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______
The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.
If the line r = `(hat"i" - 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" + 2hat"k")` is parallel to the plane `"r" * (3hat"i" - 2hat"j" + "m"hat"k")` = 10, then the value of m is ______.
Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.
If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______
If the vectors `ahat("i")+hat("j")+hat("k"), hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.
If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"` = 0 and `bar"r"xx bar"b" = bar"c" xx bar"b"`, then `bar"r"` = ______.
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.
If `veca, vecb, vecc` are vectors such that `[(veca, vecb, vecc)]` = 4, then `[(veca xx vecb, vecb xx vecc, vecc xx veca)]` = ______.
Let `veca, vecb` and `vecc` be non-coplanar unit vectors equally inclined to one another at an acute angle θ. Then `[(veca, vecb, vecc)]` in terms of θ is equal to ______.
Find two unit vectors each of which is perpendicular to both `baru and barv, "where" baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru "and" barv`, where `baru =2hati + hatj - 2hatk, barv =hati + 2hatj - 2hatk `
Find two unit vectors each of which is perpendicular to both
`baru "and" barv, "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
If a vector has direction angles 45º and 60º find the third direction angle.
Find the direction ratios of a line perpendicular to both the lines whose direction ratios are 3, –2, 1 and 2, 4, –2
Find two unit vectors each of which is perpendicular to both `baru and barv`, where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv, "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
If a vector has direction angles 45ºand 60º find the third direction angle.
Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`