English

If aba¯.b¯=3 and abijka¯×b¯=2i^+j^+2k^, find the angle between aa¯ and bb¯. - Mathematics and Statistics

Advertisements
Advertisements

Question

If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.

Sum

Solution

Let θ be the angle between `bar"a"` and `bar"b"`

∵ `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`

∴ `|bar"a" xx bar"b"| = sqrt(2^2 + 1^2 + 2^2) = sqrt(4 + 1 + 4) = 3`

∴ `|bar"a"||bar"b"|` sin θ = 3      ...(1)

∴ `bar"a".bar"b" = sqrt3`

∴ `|bar"a"||bar"b"| "cos" theta = sqrt3`     ....(2)

∴ Dividing (1) by (2), we get

`(|bar"a"||bar"b"| "sin" theta)/(|bar"a"||bar"b"| "cos" theta) = 3/sqrt3`

∴ tan θ = `sqrt3 = tan 60^circ`

∴ θ = 60°

shaalaa.com
Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Chapter 5: Vectors - Exercise 5.4 [Page 178]

RELATED QUESTIONS

If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`


Show that the sum of the length of projections of `"p"hat"i" + "q"hat"j" + "r"hat"k"` on the coordinate axes, where p = 2, q = 3 and r = 4 is 9.


Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1).


If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`


If a line makes angles 90°, 135°, 45° with the X-, Y- and Z-axes respectively, then find its direction cosines.


Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"`  and  `hat"i" + hat"j"`.


Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`


Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.


Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.


If `bar"a" = hat"i" + hat"j" + hat"k"  "and"  bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c"  "and"  bar"a".bar"b" = 3`


Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.


The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______ 


If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"`  = 0 and `bar"r"xx bar"b" = bar"c"  xx bar"b"`, then `bar"r"` = ______.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.


For non zero, non collinear vectors `vecp` and `vecq`, the value of `[(hati, vecp, vecq)]hati + [(hatj, vecp, vecq)]hatj + [(hatk, vecp, vecq)]hatk` is ______.


Let `veca, vecb` and `vecc` be non-coplanar unit vectors equally inclined to one another at an acute angle θ. Then `[(veca, vecb, vecc)]` in terms of θ is equal to ______.


Find two unit vectors each of which is perpendicular to both `\overline "u" and \overline "v",` where ` \overline "u" = 2hati + hatj - 2hatk, \overline "v" = hati + 2hatj - 2hatk`


If a vector has direction angles 45º and 60º find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru and barv, where  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


If a vector has direction angles 45° and 60° find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


If a vector has direction angles 45ºand 60º find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv , "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj -2hatk` 


Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×