Advertisements
Advertisements
प्रश्न
If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.
उत्तर
Let θ be the angle between `bar"a"` and `bar"b"`
∵ `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`
∴ `|bar"a" xx bar"b"| = sqrt(2^2 + 1^2 + 2^2) = sqrt(4 + 1 + 4) = 3`
∴ `|bar"a"||bar"b"|` sin θ = 3 ...(1)
∴ `bar"a".bar"b" = sqrt3`
∴ `|bar"a"||bar"b"| "cos" theta = sqrt3` ....(2)
∴ Dividing (1) by (2), we get
`(|bar"a"||bar"b"| "sin" theta)/(|bar"a"||bar"b"| "cos" theta) = 3/sqrt3`
∴ tan θ = `sqrt3 = tan 60^circ`
∴ θ = 60°
APPEARS IN
संबंधित प्रश्न
Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk`, `barv = hati + 2hatj - 2hatk`.
Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.
Show that the sum of the length of projections of `"p"hat"i" + "q"hat"j" + "r"hat"k"` on the coordinate axes, where p = 2, q = 3 and r = 4 is 9.
Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.
If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`
If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`
The direction ratios of `bar"AB"` are −2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, find B.
If `bar"a" = 2hat"i" + 3hat"j" - hat"k"`, `bar"b" = hat"i" - 4hat"j" + 2hat"k"`, find `(bar"a" + bar"b") xx (bar"a" - bar"b")`
Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"` and `hat"i" + hat"j"`.
If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.
Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`
If `bar"a" = hat"i" + hat"j" + hat"k" "and" bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c" "and" bar"a".bar"b" = 3`
Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`
Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1
If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.
If `|bar("a")*bar("b")| = |bar("a") xx bar("b")|` and `bar("a")*bar("b") < 0`, then find the angle between `bar("a")` and `bar("b")`
The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______
Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.
If the vectors `ahat("i")+hat("j")+hat("k"), hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.
If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"` = 0 and `bar"r"xx bar"b" = bar"c" xx bar"b"`, then `bar"r"` = ______.
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.
Find two unit vectors each of which is perpendicular to both `baru and barv, "where" baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru "and" barv`, where `baru =2hati + hatj - 2hatk, barv =hati + 2hatj - 2hatk `
Find two unit vectors each of which is perpendicular to both `baru and barv, where baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baruandbarv, "where" baru=2hati+hatj-2hatk, barv=hati+2hatj-2hatk`.
Find two unit vectors each of which is perpendicular to both `baru and barv`, where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv , "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj -2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`