Advertisements
Advertisements
प्रश्न
Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`
उत्तर
Let `bar"a" = "x"hat"i" + "y"hat"j" + "z"hat"k"`
Then `bar"a" xx hat"i" = ("x"hat"i" + "y"hat"j" + "z"hat"k") xx hat"i"`
`= "x"(hat"i" xx hat"i") + "y"(hat"j" xx hat"i") + "z"(hat"k" xx hat"i")`
`= "z"hat"j" - "y"hat"k"` ....`[∵ hat"i" xx hat"i" = hat"0", hat"j" xx hat"i" = - hat"k", hat"k"xx hat"i" = hat"j"]`
It is given that
`bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`
∴ `"z"hat"j" - "y"hat"k" + 2("x"hat"i" + "y"hat"j" + "z"hat"k") - 5hat"j" = 0`
∴ `"z"hat"j" - "y"hat"k" + 2"x"hat"i" + 2"y"hat"j" + 2"z"hat"k" - 5hat"j" = bar"0"`
∴ `2"x"hat"i" + (2"y" + "z" - 5)hat"j" + (2"z" - "y")hat"k" = bar"0"`
By equality of vectors
2x = 0 i.e. x = 0
2y + z - 5 = 0 ....(1)
2z - y = 0 ....(2)
From (2), y = 2z
Substituting y = 2z in (1), we get
4z + z = 5
∴ z = 1
∴ y = 2z = 2(1) = 2
∴ x = 0, y = 2, z = 1
∴ `bar"a" = 2hat"j" + hat"k"`
APPEARS IN
संबंधित प्रश्न
If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`
Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.
Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1).
If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`
If a line makes angles 90°, 135°, 45° with the X-, Y- and Z-axes respectively, then find its direction cosines.
The direction ratios of `bar"AB"` are −2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, find B.
Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"` and `hat"i" + hat"j"`.
Find `bar"u".bar"v"` if `|bar"u"| = 2, |bar"v"| = 5, |bar"u" xx bar"v"| = 8`
Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`
Prove that `2(bar"a" - bar"b") xx 2(bar"a" + bar"b") = 8(bar"a" xx bar"b")`
If `bar"a" = hat"i" - 2hat"j" + 3hat"k"` , `bar"b" = 4hat"i" - 3hat"j" + hat"k"` , `bar"c" = hat"i" - hat"j" + 2hat"k"` verify that `bar"a"xx(bar"b" + bar"c") = bar"a" xx bar"b" + bar"a" xx bar"c"`
Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.
If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.
If `bar"a" = hat"i" + hat"j" + hat"k" "and" bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c" "and" bar"a".bar"b" = 3`
If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a" "and" bar"b"`.
Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1
Prove that the two vectors whose direction cosines are given by relations al + bm + cn = 0 and fmn + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`
The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______
The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.
Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2
The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______
Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.
If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______
If the vectors `ahat("i")+hat("j")+hat("k"), hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.
If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"` = 0 and `bar"r"xx bar"b" = bar"c" xx bar"b"`, then `bar"r"` = ______.
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.
Find two unit vectors each of which is perpendicular to both `baru and barv, where baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baruandbarv, "where" baru=2hati+hatj-2hatk, barv=hati+2hatj-2hatk`.
Find two unit vectors each of which is perpendicular to both `baru and barv`, where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv, "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`
If a vector has direction angles 45ºand 60º find the third direction angle.
Find two unit vectors each of which is perpendicular to both `baru and barv , "where" baru = 2hati + hatj - 2hatk, barv = hati + 2hatj -2hatk`
Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`