मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If abcda¯,b¯,c¯,d¯ are four distinct vectors such that abcda¯×b¯=c¯×d¯ and acbda¯×c¯=b¯×d¯ prove that ada¯-d¯ is parallel to bcb¯-c¯. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.

बेरीज

उत्तर

`bar"a", bar"b", bar"c", bar"d"` are four distinct vectors.

∴ `bar"a" ≠ bar"b" ≠ bar"c" ≠ bar"d"`

∴ `bar"a" - bar"d" ≠ bar"0"  "and"  bar"b" - bar"c" ≠ bar"0"`    ....(1)

Now, `bar"a" xx bar"b" = bar"c" xx bar"d"`   ...(2)

and `bar"a" xx bar"c" = bar"b" xx bar"d"`    ...(3)

Subtracting (3) from (2), we get

`bar"a" xx bar"b" - bar"a" xx bar"c" = bar"c" xx bar"d" - bar"b" xx bar"d"`

∴`bar"a" xx (bar"b" - bar"c") = (bar"c" - bar"b") xx bar"d" = - (bar"b" - bar"c") xx bar"d" = bar"d" xx (bar"b" - bar"c")`

∴ `bar"a" xx (bar"b" - bar"c") - bar"d" xx (bar"b" - bar"c") = bar"0"`

∴ `(bar"a" - bar"d") xx (bar"b" - bar"c") = bar"0"`

∴ `bar"a" - bar"d"` and `bar"b" - bar"c"` are parallel to each other.    ...[By (1)]

shaalaa.com
Vector Product of Vectors (Cross)
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Vectors - Exercise 5.4 [पृष्ठ १७९]

संबंधित प्रश्‍न

If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`


Show that the sum of the length of projections of `"p"hat"i" + "q"hat"j" + "r"hat"k"` on the coordinate axes, where p = 2, q = 3 and r = 4 is 9.


Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1).


If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`


If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`


Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"`  and  `hat"i" + hat"j"`.


If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.


If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and  `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.


Find the area of the parallelogram whose adjacent sides are `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`


Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.


Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.


Prove, by vector method, that sin (α + β) = sin α . cos β + cos α . sin β


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


Prove that the two vectors whose direction cosines are given by relations al  + bm + cn = 0 and fmn  + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`


The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


If `|bar("a")*bar("b")| = |bar("a") xx bar("b")|` and `bar("a")*bar("b") < 0`, then find the angle between `bar("a")` and `bar("b")`


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


If the line r = `(hat"i" - 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" + 2hat"k")` is parallel to the plane `"r" * (3hat"i" - 2hat"j" + "m"hat"k")` = 10, then the value of m is ______.


The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______ 


If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______ 


If the vectors `ahat("i")+hat("j")+hat("k"),  hat("i")+bhat("j")+hat("k")` and `hat("i")+hat("j")+chat("k")` are coplanar (a ≠ b ≠ c ≠ 1), then the value of abc - (a + b + c) = ______.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.


If `veca, vecb, vecc` are vectors such that `[(veca, vecb, vecc)]` = 4, then `[(veca xx vecb, vecb xx vecc, vecc xx veca)]` = ______.


Let `veca, vecb` and `vecc` be non-coplanar unit vectors equally inclined to one another at an acute angle θ. Then `[(veca, vecb, vecc)]` in terms of θ is equal to ______.


Find two unit vectors each of which is perpendicular to both `\overline "u" and \overline "v",` where ` \overline "u" = 2hati + hatj - 2hatk, \overline "v" = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv` where `baru = 2hati +hatj -2hatk, barv = hati +2hatj-2hatk`


If a vector has direction angles 45° and 60° find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru and barv`, where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv , "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj -2hatk` 


Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×