हिंदी

If abcda¯,b¯,c¯,d¯ are four distinct vectors such that abcda¯×b¯=c¯×d¯ and acbda¯×c¯=b¯×d¯ prove that ada¯-d¯ is parallel to bcb¯-c¯. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.

योग

उत्तर

`bar"a", bar"b", bar"c", bar"d"` are four distinct vectors.

∴ `bar"a" ≠ bar"b" ≠ bar"c" ≠ bar"d"`

∴ `bar"a" - bar"d" ≠ bar"0"  "and"  bar"b" - bar"c" ≠ bar"0"`    ....(1)

Now, `bar"a" xx bar"b" = bar"c" xx bar"d"`   ...(2)

and `bar"a" xx bar"c" = bar"b" xx bar"d"`    ...(3)

Subtracting (3) from (2), we get

`bar"a" xx bar"b" - bar"a" xx bar"c" = bar"c" xx bar"d" - bar"b" xx bar"d"`

∴`bar"a" xx (bar"b" - bar"c") = (bar"c" - bar"b") xx bar"d" = - (bar"b" - bar"c") xx bar"d" = bar"d" xx (bar"b" - bar"c")`

∴ `bar"a" xx (bar"b" - bar"c") - bar"d" xx (bar"b" - bar"c") = bar"0"`

∴ `(bar"a" - bar"d") xx (bar"b" - bar"c") = bar"0"`

∴ `bar"a" - bar"d"` and `bar"b" - bar"c"` are parallel to each other.    ...[By (1)]

shaalaa.com
Vector Product of Vectors (Cross)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Vectors - Exercise 5.4 [पृष्ठ १७९]

APPEARS IN

संबंधित प्रश्न

Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk`, `barv = hati + 2hatj - 2hatk`.


If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`


Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.


Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.


If a line makes angles 90°, 135°, 45° with the X-, Y- and Z-axes respectively, then find its direction cosines.


The direction ratios of `bar"AB"` are −2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, find B.


If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and  `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.


Find `bar"u".bar"v"` if `|bar"u"| = 2, |bar"v"| = 5, |bar"u" xx bar"v"| = 8`


Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.


If `bar"a" = hat"i" + hat"j" + hat"k"  "and"  bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c"  "and"  bar"a".bar"b" = 3`


Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`


If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a"  "and"  bar"b"`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.


If `|bar("a")*bar("b")| = |bar("a") xx bar("b")|` and `bar("a")*bar("b") < 0`, then find the angle between `bar("a")` and `bar("b")`


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______ 


Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.


If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"`  = 0 and `bar"r"xx bar"b" = bar"c"  xx bar"b"`, then `bar"r"` = ______.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.


If `veca, vecb, vecc` are vectors such that `[(veca, vecb, vecc)]` = 4, then `[(veca xx vecb, vecb xx vecc, vecc xx veca)]` = ______.


For non zero, non collinear vectors `vecp` and `vecq`, the value of `[(hati, vecp, vecq)]hati + [(hatj, vecp, vecq)]hatj + [(hatk, vecp, vecq)]hatk` is ______.


Let `veca, vecb` and `vecc` be non-coplanar unit vectors equally inclined to one another at an acute angle θ. Then `[(veca, vecb, vecc)]` in terms of θ is equal to ______.


Find two unit vectors each of which is perpendicular to both `baru  "and"  barv`, where `baru =2hati + hatj  - 2hatk,  barv =hati + 2hatj - 2hatk `


Find two unit vectors each of which is perpendicular to both

`baru  "and"  barv, "where"  baru = 2hati + hatj - 2hatk,  barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `\overline "u" and \overline "v",` where ` \overline "u" = 2hati + hatj - 2hatk, \overline "v" = hati + 2hatj - 2hatk`


If a vector has direction angles 45º and 60º find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru and barv, where  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv` where `baru = 2hati +hatj -2hatk, barv = hati +2hatj-2hatk`


Find the direction ratios of a line perpendicular to both the lines whose direction ratios are 3, –2, 1 and 2, 4, –2


Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×