हिंदी

If aijka¯=2i^+j^-3k^ and bijkb¯=i^-2j^+k^, find a vector of magnitude 5 perpendicular to both aa¯ and bb¯. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and  `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.

योग

उत्तर

Given: `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and 

`bar"b" = hat"i" - 2hat"j" + hat"k"`

∴ `bar"a" xx bar"b" = |(hat"i", hat"j", hat"k"),(2,1,-3),(1,-2,1)|`

`= (1 - 6)hat"i" - (2 + 3)hat"j" + (- 4 - 1)hat"k"`

`= - 5hat"i" - 5hat"j" - 5hat"k"`

∴ `|bar"a" xx bar"b"| = sqrt((-5)^2 + (- 5)^2 + (- 5)^2)`

`= sqrt(25 + 25 +25) = sqrt75 = 5sqrt3`

∴ unit vectors perpendicular to both the vectors `bar"a"` and `bar"b"`

`hatn = +-((bar"a"xxbar"b"))/(|bar"a" xx bar"b"|)`

`hatn = +- ((- 5hat"i" - 5hat"j" - 5hat"k"))/(5sqrt3)`

`hatn = +- ((-5)(hati + hatj + hatk))/(5sqrt3)` 

`hatn = -+ ((hat"i" + hat"j" + hat"k"))/sqrt3`

∴ required vectors of magnitude 5 units

`= +- 5/sqrt3 (hat"i" + hat"j" + hat"k")`

shaalaa.com

Notes

The answer in the textbook is incorrect.

Vector Product of Vectors (Cross)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Vectors - Exercise 5.4 [पृष्ठ १७८]

APPEARS IN

संबंधित प्रश्न

Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk`, `barv = hati + 2hatj - 2hatk`.


If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`


Show that the sum of the length of projections of `"p"hat"i" + "q"hat"j" + "r"hat"k"` on the coordinate axes, where p = 2, q = 3 and r = 4 is 9.


If `bar"p", bar"q"` and `bar"r"` are unit vectors, find `bar"p".bar"r".`


If a line makes angles 90°, 135°, 45° with the X-, Y- and Z-axes respectively, then find its direction cosines.


If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.


Find `|bar"u" xx bar"v"|` if `|bar"u"| = 10, |bar"v"| = 2, bar"u".bar"v" = 12`


Prove that `2(bar"a" - bar"b") xx 2(bar"a" + bar"b") = 8(bar"a" xx bar"b")`


If `bar"a" = hat"i" - 2hat"j" + 3hat"k"`  , `bar"b" = 4hat"i" - 3hat"j" + hat"k"` , `bar"c" = hat"i" - hat"j" + 2hat"k"` verify that `bar"a"xx(bar"b" + bar"c") = bar"a" xx bar"b" + bar"a" xx bar"c"`


Find the area of the parallelogram whose adjacent sides are `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`


Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.


Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.


If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.


If `bar"a" = hat"i" + hat"j" + hat"k"  "and"  bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c"  "and"  bar"a".bar"b" = 3`


Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`


If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a"  "and"  bar"b"`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


Prove that the two vectors whose direction cosines are given by relations al  + bm + cn = 0 and fmn  + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`


If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


The area of triangle ABC in which c = 8 , b = 3, ∠A = 60° is ______ 


Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.


If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______ 


If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"`  = 0 and `bar"r"xx bar"b" = bar"c"  xx bar"b"`, then `bar"r"` = ______.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.


If `veca, vecb, vecc` are vectors such that `[(veca, vecb, vecc)]` = 4, then `[(veca xx vecb, vecb xx vecc, vecc xx veca)]` = ______.


Find two unit vectors each of which is perpendicular to both `\overline "u" and \overline "v",` where ` \overline "u" = 2hati + hatj - 2hatk, \overline "v" = hati + 2hatj - 2hatk`


If a vector has direction angles 45º and 60º find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru and barv, where  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


If a vector has direction angles 45ºand 60º find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×