हिंदी

If a line makes angles 90°, 135°, 45° with the X-, Y- and Z-axes respectively, then find its direction cosines. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If a line makes angles 90°, 135°, 45° with the X-, Y- and Z-axes respectively, then find its direction cosines.

योग

उत्तर

Let l, m, n be the direction cosines of the line.

Then l = cos α, m = cos β, n = cos γ

Here, α = 90°, β = 135°, γ = 45°

∴ l = cos 90° = 0

m = cos 135° = cos (180° - 45°) = - cos 45°

`= - 1/sqrt2` and n = cos 45° = `1/sqrt2`

∴ the direction cosines of the line are 0, `- 1/sqrt2, 1/sqrt2`

shaalaa.com
Vector Product of Vectors (Cross)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Vectors - Exercise 5.3 [पृष्ठ १६९]

APPEARS IN

संबंधित प्रश्न

If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`


Find the values of c so that for all real x, the vectors `"xc"hat"i" - 6hat"j" + 3hat"k"` and `"x"hat"i" + 2hat"j" + 2"cx"hat"k"` make an obtuse angle.


Suppose that all sides of a quadrilateral are equal in length and opposite sides are parallel. Use vector methods to show that the diagonals are perpendicular.


If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`


The direction ratios of `bar"AB"` are −2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, find B.


Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"`  and  `hat"i" + hat"j"`.


If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.


If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and  `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.


Find the area of the parallelogram whose adjacent sides are `bar"a" = 2hat"i" - 2hat"j" + hat"k"` and `bar"b" = hat"i" - 3hat"j" - 3hat"k"`


Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.


If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.


Find `bar"a"` if `bar"a" xx hat"i" + 2bar"a" - 5hat"j" = bar"0"`


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


Prove that the two vectors whose direction cosines are given by relations al  + bm + cn = 0 and fmn  + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`


If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.


The angle θ between two non-zero vectors `bar("a")` and `bar("b")` is given by cos θ = ______


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


If `|bar("a")*bar("b")| = |bar("a") xx bar("b")|` and `bar("a")*bar("b") < 0`, then find the angle between `bar("a")` and `bar("b")`


If the line r = `(hat"i" - 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" + 2hat"k")` is parallel to the plane `"r" * (3hat"i" - 2hat"j" + "m"hat"k")` = 10, then the value of m is ______.


Let `bar"a" = 2hat"i" + hat"j" - 2hat"k" and bar"b" = hat"i" + hat"j"`. Let `vec"c"` be a vector such that `|bar"c" - bar"a"| = 3, |(bar"a" xx bar"b") xx bar"c"|` = 3 and the angle between `vec"c" and vec"a" xx vec"b" "be" 30^circ`. Then `vec"a" * vec"c"` is equal to ______.


If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______ 


If `bar"a"` makes an acute angle with `bar"b", bar"r"*bar"a"`  = 0 and `bar"r"xx bar"b" = bar"c"  xx bar"b"`, then `bar"r"` = ______.


For non zero, non collinear vectors `vecp` and `vecq`, the value of `[(hati, vecp, vecq)]hati + [(hatj, vecp, vecq)]hatj + [(hatk, vecp, vecq)]hatk` is ______.


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru  "and"  barv`, where `baru =2hati + hatj  - 2hatk,  barv =hati + 2hatj - 2hatk `


Find two unit vectors each of which is perpendicular to both

`baru  "and"  barv, "where"  baru = 2hati + hatj - 2hatk,  barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv, where  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv` where `baru = 2hati +hatj -2hatk, barv = hati +2hatj-2hatk`


If a vector has direction angles 45° and 60° find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baruandbarv,  "where"  baru=2hati+hatj-2hatk, barv=hati+2hatj-2hatk`.


Find two unit vectors each of which is perpendicular to both `baru and barv`, where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


If a vector has direction angles 45ºand 60º find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×