English

Prove that the two vectors whose direction cosines are given by relations al + bm + cn = 0 and fmn + gnl + hlm = 0 are perpendicular, if fagbhcfa+gb+hc=0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that the two vectors whose direction cosines are given by relations al  + bm + cn = 0 and fmn  + gnl + hlm = 0 are perpendicular, if `"f"/"a" + "g"/"b" + "h"/"c" = 0`

Sum

Solution

Given: al  + bm + cn = 0    ...(1)

and fmn  + gnl + hlm = 0     ...(2)

From (1), n = - `(("al + bm")/"c")`   ...(3)

Substituting this value of n in equation (2), we get

(fm + gl).`[- ("al + bm")/"c"] + "hlm" = 0` 

∴ - (aflm + bfm2 + agl2 + bglm) + chlm = 0

∴ agl2 + (af + bg - ch)lm + bfm2 = 0    ...(4)

Note that both l and m cannot be zero, because if l = m = 0, then from (3), we get

n = 0, which is not possible as l2 + m2 + n2 = 1

Let us take m ≠ 0.

Dividing equation (4) by m2, we get

`"ag"(1/"m"^2) + ("af" + "bg" - "ch")(1/"m") + "bf" = 0`    ....(5)

This is quadratic equation in `(1/"m")`

If l1, m1, n1 and l2, m2, n2 are the direction cosines of the two lines given by the equation (1) and (2), then `"l"_1/"m"_1` and `"l"_2/"m"_2` are the roots of the equation (5).

From the quadratic equation (5), we get 

product of roots = `"l"_1/"m"_1 . "l"_2/"m"_2 = "bf"/"ag"`

∴ `("l"_1"l"_2)/("m"_1"m"_2) = ("f"//"a")/("g"//"b")`

∴ `("l"_1"l"_2)/("f"//"a") = ("m"_1"m"_2)/("g"//"b")`

Similarly, we can show that,

`("l"_1"l"_2)/("f"//"a") = ("n"_1"n"_2)/("h"//"c")`

∴ `("l"_1"l"_2)/("f"//"a") = ("m"_1"m"_2)/("g"//"b") = ("n"_1"n"_2)/("h"//"c") = lambda`    ...(Say)

∴ `"l"_1"l"_2 = lambda ("f"/"a"), "m"_1"m"_2 = lambda ("g"/"b"), "n"_1"n"_2 = lambda("h"/"c")`

Now, the lines are perpendicular if

`"l"_1"l"_2 + "m"_1"m"_2 + "n"_1"n"_2 = 0`

i.e. if `lambda ("f"/"a") + lambda("g"/"b") + lambda("h"/"c") = 0`

i.e. if `"f"/"a" + "g"/"b" + "h"/"c" = 0`

shaalaa.com
Vector Product of Vectors (Cross)
  Is there an error in this question or solution?
Chapter 5: Vectors - Exercise 5.4 [Page 179]

RELATED QUESTIONS

Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk`, `barv = hati + 2hatj - 2hatk`.


If `veca` and `vecb` are two vectors perpendicular to each other, prove that `(veca + vecb)^2 = (veca - vecb)^2`


Show that the sum of the length of projections of `"p"hat"i" + "q"hat"j" + "r"hat"k"` on the coordinate axes, where p = 2, q = 3 and r = 4 is 9.


Find the angle P of the triangle whose vertices are P(0, - 1, - 2), Q(3, 1, 4) and R(5, 7, 1).


If `hat"p", hat"q"` and `hat"r"` are unit vectors `hat"p"+hat "r" = hat "q"`, find `hat"p".hat"q".`


The direction ratios of `bar"AB"` are −2, 2, 1. If A = (4, 1, 5) and l(AB) = 6 units, find B.


If `bar"a" = 2hat"i" + 3hat"j" - hat"k"`, `bar"b" = hat"i" - 4hat"j" + 2hat"k"`, find `(bar"a" + bar"b") xx (bar"a" - bar"b")`


Find a unit vector perpendicular to the vectors `hat"j" + 2hat"k"`  and  `hat"i" + hat"j"`.


If `bar"a".bar"b" = sqrt3` and `bar"a" xx bar"b" = 2hat"i" + hat"j" + 2hat"k"`, find the angle between `bar"a"` and `bar"b"`.


If `bar"a" = 2hat"i" + hat"j" - 3hat"k"` and  `bar"b" = hat"i" - 2hat"j" + hat"k"`, find a vector of magnitude 5 perpendicular to both `bar"a"` and `bar"b"`.


Show that vector area of a parallelogram ABCD is `1/2 (bar"AC" xx bar"BD")` where AC and BD are its diagonals.


Find the area of parallelogram whose diagonals are determined by the vectors `bar"a" = 3hat"i" - hat"j" - 2hat"k"` and `bar"b" = - hat"i" + 3hat"j" - 3hat"k"`.


If `bar"a", bar"b", bar"c", bar"d"` are four distinct vectors such that `bar"a" xx bar"b" = bar"c" xx bar"d"` and `bar"a" xx bar"c" = bar"b" xx bar"d"` prove that `bar"a" - bar"d"` is parallel to `bar"b" - bar"c"`.


If `bar"a" = hat"i" + hat"j" + hat"k"  "and"  bar"c" = hat"j" - hat"k"`, find `bar"a"` vector `bar"b"` satisfying `bar"a" xx bar"b" = bar"c"  "and"  bar"a".bar"b" = 3`


If `|bar"a".bar"b"| = |bar"a" xx bar"b"|` and `bar"a".bar"b" < 0`, then find the angle between `bar"a"  "and"  bar"b"`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are - 2, 1, - 1 and - 3, - 4, 1


If A(1, 2, 3) and B(4, 5, 6) are two points, then find the foot of the perpendicular from the point B to the line joining the origin and the point A.


The value of `hat"i"*(hat"j" xx hat"k") + hat"j"*(hat"i" xx hat"k") + hat"k"*(hat"i" xx hat"j")`.


Find the direction ratios of a vector perpendicular to the two lines whose direction ratios are 1, 3, 2 and –1, 1, 2


If the line r = `(hat"i" - 2hat"j" + 3hat"k") + lambda(2hat"i" + hat"j" + 2hat"k")` is parallel to the plane `"r" * (3hat"i" - 2hat"j" + "m"hat"k")` = 10, then the value of m is ______.


If `overlinea = hati + hatj + hatk` and `overlinec = hatj - hatk` and `overlineb` is a vector satisfying `overlinea xx overlineb = overlinec` and `overlinea . overlineb = 3`, then `3|overlineb|^2` is equal to ______ 


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"c" = hat"j" - hat"k"`. find a vector `vec"b"` satisfying `vec"a" xx vec"b" = vec"c"` and `vec"a"·vec"b"` = 3.


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk , barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both

`baru  "and"  barv, "where"  baru = 2hati + hatj - 2hatk,  barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv` where `baru = 2hati +hatj -2hatk, barv = hati +2hatj-2hatk`


If a vector has direction angles 45° and 60° find the third direction angle.


Find two unit vectors each of which is perpendicular to both `baru and barv, "where"  baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru` and `barv` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Find two unit vectors each of which is perpendicular to both `baru and barv,` where `baru = 2hati + hatj - 2hatk, barv = hati + 2hatj - 2hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×