Advertisements
Advertisements
Question
If m – n = 16 and m2 + n2 = 400, then find mn.
Solution
Given, m – n = 16 and m2 + n2 = 400.
Since, (m – n)2 = m2 + n2 = 2mn ...[Using the identity, (a – b)2 = a2 + b2 – 2ab]
∴ (16)2 = 400 – 2mn
⇒ 2mn = 400 – (16)2
⇒ 2mn = 400 – 256
⇒ 2mn = 144
⇒ `mn = 144/2`
⇒ mn = 72
APPEARS IN
RELATED QUESTIONS
Expand `("x"-2/"x")^2`
Factors of 4 – m2 are
Expand the following square, using suitable identities
(b – 7)2
Simplify: (a + b)2 – (a – b)2
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
x2 – 8x + 16
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
y2 – 14y + 49
Factorise the following, using the identity a2 – 2ab + b2 = (a – b)2.
9x2 – 12x + 4
If x – y = 13 and xy = 28, then find x2 + y2.
Subtract b(b2 + b – 7) + 5 from 3b2 – 8 and find the value of expression obtained for b = – 3.
If `x - 1/x = 7` then find the value of `x^2 + 1/x^2`.