Advertisements
Advertisements
Question
If MR = 14 – 6x + 9x2, Find the demand function
Solution
MR = 14 – 6x + 9x2
R = `int (14 - 6x + 9x^2) "d"x + "k"`
= 14x – 3x2 + 3x3 + k
Since R = 0
When x = 0
k = 0
So revenue function R = 14x – 3x2 + 3x3
Demand function P = ``"R"/x` = 14 – 3x + 3x2
APPEARS IN
RELATED QUESTIONS
The elasticity of demand with respect to price for a commodity is given by `((4 - x))/x`, where p is the price when demand is x. Find the demand function when the price is 4 and the demand is 2. Also, find the revenue function
The marginal cost function of a product is given by `"dc"/("d"x)` = 100 – 10x + 0.1x2 where x is the output. Obtain the total and the average cost function of the firm under the assumption, that its fixed cost is ₹ 500
Given the marginal revenue function `4/(2x + 3)^2 - 1` show that the average revenue function is P = `4/(6x + 9) - 1`
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
The demand and supply functions under perfect competition are pd = 1600 – x2 and ps = 2x2 + 400 respectively. Find the producer’s surplus
Choose the correct alternative:
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
When x0 = 5 and p0 = 3 the consumer’s surplus for the demand function pd = 28 – x2 is
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units
The marginal cost of production of a firm is given by C'(x) = `20 + x/20` the marginal revenue is given by R’(x) = 30 and the fixed cost is ₹ 100. Find the profit function