Advertisements
Advertisements
Question
The marginal cost function of a product is given by `"dc"/("d"x)` = 100 – 10x + 0.1x2 where x is the output. Obtain the total and the average cost function of the firm under the assumption, that its fixed cost is ₹ 500
Solution
`"dc"/("d"x)` = 100 – 10x + 0.1x2 and k = ₹ 500
dc = (100 – 10x + 0.1 x2) dx
Integrating on both sides,
`int "dc" = int(100 - 10x + 0.1x^2) "d"x`
C = `100x - 10(x^2/2) + 0.1(x^3/3) + "k"`
Total cost C = `100x - 5x^2 + 0.1(x^3/3) + 500`
Average cost A.C = `"C"/x = (100x - 5x^2 + 0.1(x^3/3) + 500)/x`
A.C = `100 - 5x + 0.1(x^2/3) + 500/x`
A.C = `100 - 5x + x^2/30 + 500/x`
APPEARS IN
RELATED QUESTIONS
The marginal cost function is MC = `300 x^(2/5)` and fixed cost is zero. Find out the total cost and average cost functions
If the marginal cost function of x units of output is `"a"/sqrt("a"x + "b")` and if the cost of output is zero. Find the total cost as a function of x
Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is C'(x) = `x^2/200 + 4`
The marginal revenue (in thousands of Rupees) functions for a particular commodity is `5 + 3"e"^(- 003x)` where x denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given e–3 = 0.05 approximately)
Find the revenue function and the demand function if the marginal revenue for x units is MR = 10 + 3x – x2
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
Choose the correct alternative:
When x0 = 2 and P0 = 12 the producer’s surplus for the supply function Ps = 2x2 + 4 is
Choose the correct alternative:
The producer’s surplus when the supply function for a commodity is P = 3 + x and x0 = 3 is
Choose the correct alternative:
The demand and supply function of a commodity are P(x) = (x – 5)2 and S(x) = x2 + x + 3 then the equilibrium quantity x0 is
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to