Advertisements
Advertisements
Question
Find the revenue function and the demand function if the marginal revenue for x units is MR = 10 + 3x – x2
Solution
The marginal revenue function
MR = 10 + 3x – x2
The Revenue function
R = `int ("MR") "d"x`
= `int (10 + 3x - x^2) "d"x`
R = `[10x + 3(x^2/2) - (x^3/3)] + "k"`
When x = 0
R = 0
⇒ k = 0
∴ R = `10x + (3x^2)/2 - x^3/3`
⇒ px = `10x + (3x^2)/2 - x^3/3`
⇒ p = `(10x + (3x^2)/2 - x^3/3)/x`
∴∴ The demand function p = `10 + (3x^2)/2 - x^2/3`
APPEARS IN
RELATED QUESTIONS
Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is C'(x) = `x^2/200 + 4`
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to
Choose the correct alternative:
For a demand function p, if `int "dp"/"p" = "k" int ("d"x)/x` then k is equal to
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`
The demand equation for a product is Pd = 20 – 5x and the supply equation is Ps = 4x + 8. Determine the consumers surplus and producer’s surplus under market equilibrium
The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.