Advertisements
Advertisements
Question
If the marginal revenue function is R'(x) = 1500 – 4x – 3x2. Find the revenue function and average revenue function
Solution
Given marginal revenue function
MR = R’(x)= 1500 – 4x – 3x2
Revenue function R(x) = `int "R'"(x) "d"x + "c"`
R = `int (1500 - 4x - 3x^2) "d"x + "c"`
R = 1500x – 2x2 – x3 + c
When x = 0
R = 0
⇒ c = 0
So R = 1500x – 2x2 – x3
Average revenue function P = `"R"/x` ⇒ 1500 – 2x – x2
APPEARS IN
RELATED QUESTIONS
The cost of an overhaul of an engine is ₹ 10,000 The operating cost per hour is at the rate of 2x – 240 where the engine has run x km. Find out the total cost if the engine runs for 300 hours after overhaul
A company receives a shipment of 500 scooters every 30 days. From experience, it is known that the inventory on hand is related to the number of days x. Since the shipment, I(x) = 500 – 0.03x2, the daily holding cost per scooter is ₹ 0.3. Determine the total cost for maintaining inventory for 30 days
The marginal cost function is MC = `300 x^(2/5)` and fixed cost is zero. Find out the total cost and average cost functions
Calculate consumer’s surplus if the demand function p = 50 – 2x and x = 20
Choose the correct alternative:
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
Choose the correct alternative:
The demand and supply functions are given by D(x) = 16 – x2 and S(x) = 2x2 + 4 are under perfect competition, then the equilibrium price x is
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
The demand function for the marginal function MR = 100 – 9x2 is
Choose the correct alternative:
If the marginal revenue of a firm is constant, then the demand function is
A company requires f(x) number of hours to produce 500 units. It is represented by f(x) = 1800x–0.4. Find out the number of hours required to produce additional 400 units. [(900)0.6 = 59.22, (500)0.6 = 41.63]