Advertisements
Advertisements
प्रश्न
If the marginal revenue function is R'(x) = 1500 – 4x – 3x2. Find the revenue function and average revenue function
उत्तर
Given marginal revenue function
MR = R’(x)= 1500 – 4x – 3x2
Revenue function R(x) = `int "R'"(x) "d"x + "c"`
R = `int (1500 - 4x - 3x^2) "d"x + "c"`
R = 1500x – 2x2 – x3 + c
When x = 0
R = 0
⇒ c = 0
So R = 1500x – 2x2 – x3
Average revenue function P = `"R"/x` ⇒ 1500 – 2x – x2
APPEARS IN
संबंधित प्रश्न
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
Find the revenue function and the demand function if the marginal revenue for x units is MR = 10 + 3x – x2
The demand function for a commodity is p = e–x .Find the consumer’s surplus when p = 0.5
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
Choose the correct alternative:
The demand function for the marginal function MR = 100 – 9x2 is
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is
Choose the correct alternative:
For a demand function p, if `int "dp"/"p" = "k" int ("d"x)/x` then k is equal to
For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function
A company requires f(x) number of hours to produce 500 units. It is represented by f(x) = 1800x–0.4. Find out the number of hours required to produce additional 400 units. [(900)0.6 = 59.22, (500)0.6 = 41.63]