Advertisements
Advertisements
प्रश्न
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
उत्तर
MC = C'(x) = 5 + 0.13x
C(x) = `int "C'"(x) "d"x + "k"_1`
= `int (5 + 0.13x) "d"x + "k"_1`
= `5x + 0.13/2 x^2 + "k"_1`
When quantity produced is zero, fixed cost is 120
i.e When x = 0, C = 120
⇒ k1 = 120
Cost function is 5x + 0.065x2 + 120
Now given MR = R'(x) = 18
R(x) = `int 18 "d"x + "k"_2`
= `18x + "k"_2`
When x = 0
R = 0
⇒ k2 = 0
Revenue = 18x
Profit P = Total Revenue – Total cost
= 18x – (5x + 0.065x2 + 120)
Profit function = 13x – 0.065x2 – 120
APPEARS IN
संबंधित प्रश्न
A company receives a shipment of 500 scooters every 30 days. From experience, it is known that the inventory on hand is related to the number of days x. Since the shipment, I(x) = 500 – 0.03x2, the daily holding cost per scooter is ₹ 0.3. Determine the total cost for maintaining inventory for 30 days
An account fetches interest at the rate of 5% per annum compounded continuously. An individual deposits ₹ 1,000 each year in his account. How much will be in the account after 5 years. (e0.25 = 1.284)
The marginal cost function is MC = `300 x^(2/5)` and fixed cost is zero. Find out the total cost and average cost functions
If MR = 14 – 6x + 9x2, Find the demand function
The demand function for a commodity is p = e–x .Find the consumer’s surplus when p = 0.5
The demand equation for a products is x = `sqrt(100 - "p")` and the supply equation is x = `"P"/2 - 10`. Determine the consumer’s surplus and producer’s surplus, under market equilibrium
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
If the marginal revenue of a firm is constant, then the demand function is
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`