Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The profit of a function p(x) is maximum when
विकल्प
MC – MR = 0
MC = 0
MR = 0
MC + MR = 0
उत्तर
MC – MR = 0
APPEARS IN
संबंधित प्रश्न
The marginal revenue (in thousands of Rupees) functions for a particular commodity is `5 + 3"e"^(- 003x)` where x denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given e–3 = 0.05 approximately)
The marginal cost function of a commodity is given by MC = `14000/sqrt(7x + 4)` and the fixed cost is ₹ 18,000. Find the total cost and average cost
If MR = 20 – 5x + 3x2, Find total revenue function
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
If the supply function for a product is p = 3x + 5x2. Find the producer’s surplus when x = 4
Choose the correct alternative:
If the marginal revenue function of a firm is MR = `"e"^((-x)/10)`, then revenue is
Choose the correct alternative:
When x0 = 5 and p0 = 3 the consumer’s surplus for the demand function pd = 28 – x2 is
Choose the correct alternative:
If the marginal revenue of a firm is constant, then the demand function is
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`
The marginal cost of production of a firm is given by C'(x) = `20 + x/20` the marginal revenue is given by R’(x) = 30 and the fixed cost is ₹ 100. Find the profit function