Advertisements
Advertisements
प्रश्न
If MR = 20 – 5x + 3x2, Find total revenue function
उत्तर
MR = 20 – 5x + 3x2
Total Revenue function
R = `int ("MR") "d"x`
= `int (20 - 5x + x^2) "d"x`
R = `20x = (5x^2)/2 + (3x^3)/3 + "k"`
When x = 0
R = 0
⇒ k = 0
∴ R = `20x - 5/2x^2 + x^3`
APPEARS IN
संबंधित प्रश्न
The marginal revenue (in thousands of Rupees) functions for a particular commodity is `5 + 3"e"^(- 003x)` where x denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given e–3 = 0.05 approximately)
If the marginal cost (MC) of production of the company is directly proportional to the number of units (x) produced, then find the total cost function, when the fixed cost is ₹ 5,000 and the cost of producing 50 units is ₹ 5,625
The demand function for a commodity is p =`36/(x + 4)`. Find the consumer’s surplus when the prevailing market price is ₹ 6
The demand and supply functions under perfect competition are pd = 1600 – x2 and ps = 2x2 + 400 respectively. Find the producer’s surplus
Choose the correct alternative:
The demand and supply functions are given by D(x) = 16 – x2 and S(x) = 2x2 + 4 are under perfect competition, then the equilibrium price x is
Choose the correct alternative:
The marginal revenue and marginal cost functions of a company are MR = 30 – 6x and MC = – 24 + 3x where x is the product, then the profit function is
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
The demand and supply function of a commodity are D(x) = 25 – 2x and S(x) = `(10 + x)/4` then the equilibrium price p0 is
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`
The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.