Advertisements
Advertisements
प्रश्न
If the marginal cost (MC) of production of the company is directly proportional to the number of units (x) produced, then find the total cost function, when the fixed cost is ₹ 5,000 and the cost of producing 50 units is ₹ 5,625
उत्तर
M.C αx
M.C = λx
fixed cost k = ₹ 5000
Cost function C = `int ("M.C") "d"x`
= `int lambdax "d"x`
C = `(lambdax^2)/2 + "k"`
⇒ C = `lambda (x^2/2) + 5000` ........(1)
When x = 50 then C = 5625
5625 = `(lambda(50)^2)/2 + 5000`
5625 – 5000 = `(lambda(2500))/2 = 1250 lambda`
`1250 lambda = 625`
⇒ `lambda = 625/1250 = 1/2`
∴ Required total cost function from equation (1)
C = `1/2(x^2/2) + 5000`
∴ C = `x^2/4 + 5000`
APPEARS IN
संबंधित प्रश्न
Elasticity of a function `("E"y)/("E"x)` is given by `("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`. Find the function when x = 2, y = `3/8`
An account fetches interest at the rate of 5% per annum compounded continuously. An individual deposits ₹ 1,000 each year in his account. How much will be in the account after 5 years. (e0.25 = 1.284)
Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is C'(x) = `x^2/200 + 4`
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
If MR = 14 – 6x + 9x2, Find the demand function
Calculate consumer’s surplus if the demand function p = 50 – 2x and x = 20
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
If the marginal revenue function of a firm is MR = `"e"^((-x)/10)`, then revenue is
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is
For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function