Advertisements
Advertisements
Question
If the marginal cost (MC) of production of the company is directly proportional to the number of units (x) produced, then find the total cost function, when the fixed cost is ₹ 5,000 and the cost of producing 50 units is ₹ 5,625
Solution
M.C αx
M.C = λx
fixed cost k = ₹ 5000
Cost function C = `int ("M.C") "d"x`
= `int lambdax "d"x`
C = `(lambdax^2)/2 + "k"`
⇒ C = `lambda (x^2/2) + 5000` ........(1)
When x = 50 then C = 5625
5625 = `(lambda(50)^2)/2 + 5000`
5625 – 5000 = `(lambda(2500))/2 = 1250 lambda`
`1250 lambda = 625`
⇒ `lambda = 625/1250 = 1/2`
∴ Required total cost function from equation (1)
C = `1/2(x^2/2) + 5000`
∴ C = `x^2/4 + 5000`
APPEARS IN
RELATED QUESTIONS
The elasticity of demand with respect to price for a commodity is given by `((4 - x))/x`, where p is the price when demand is x. Find the demand function when the price is 4 and the demand is 2. Also, find the revenue function
An account fetches interest at the rate of 5% per annum compounded continuously. An individual deposits ₹ 1,000 each year in his account. How much will be in the account after 5 years. (e0.25 = 1.284)
Given the marginal revenue function `4/(2x + 3)^2 - 1` show that the average revenue function is P = `4/(6x + 9) - 1`
If MR = 20 – 5x + 3x2, Find total revenue function
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
The demand function for a commodity is p =`36/(x + 4)`. Find the consumer’s surplus when the prevailing market price is ₹ 6
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
The producer’s surplus when the supply function for a commodity is P = 3 + x and x0 = 3 is
A company requires f(x) number of hours to produce 500 units. It is represented by f(x) = 1800x–0.4. Find out the number of hours required to produce additional 400 units. [(900)0.6 = 59.22, (500)0.6 = 41.63]