Advertisements
Advertisements
Question
The marginal cost function of a commodity is given by MC = `14000/sqrt(7x + 4)` and the fixed cost is ₹ 18,000. Find the total cost and average cost
Solution
The marginal cost function of a commodity
Mc = `14000/sqrt(7x + 4)`
= `14000 (7x + 4)^((-1)/2)`
Fixed cost k = ₹ 18,000
Total cost function C = `int ("M.C") "d"x`
= `int 14000 (7x + 4)^((-1)/2) "d"x`
= `14000 [(7x + 4)^((-1)/2 + 1)/(((-1)/2 + 1) xx (7))] + "k"`
= `14000 [(7x + 4)^(1/2)/((7/2))] + 18000`
= `14000 xx 2/7 xx (sqrt(7x + 4)) + 18000`
∴ Total cost C = `4000 [sqrt(7x + 4)] + 18000`
Average cost A.C = `("C"(x))/x`
= `(4000[sqrt(7x + 4)] + 18000)/x`
A.C = `4000/x sqrt(7x + 4) + 18000/x`
APPEARS IN
RELATED QUESTIONS
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
If MR = 14 – 6x + 9x2, Find the demand function
The demand function for a commodity is p = e–x .Find the consumer’s surplus when p = 0.5
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is
Choose the correct alternative:
The demand and supply function of a commodity are P(x) = (x – 5)2 and S(x) = x2 + x + 3 then the equilibrium quantity x0 is
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`
The demand equation for a product is Pd = 20 – 5x and the supply equation is Ps = 4x + 8. Determine the consumers surplus and producer’s surplus under market equilibrium
The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.