Advertisements
Advertisements
प्रश्न
The marginal cost function of a commodity is given by MC = `14000/sqrt(7x + 4)` and the fixed cost is ₹ 18,000. Find the total cost and average cost
उत्तर
The marginal cost function of a commodity
Mc = `14000/sqrt(7x + 4)`
= `14000 (7x + 4)^((-1)/2)`
Fixed cost k = ₹ 18,000
Total cost function C = `int ("M.C") "d"x`
= `int 14000 (7x + 4)^((-1)/2) "d"x`
= `14000 [(7x + 4)^((-1)/2 + 1)/(((-1)/2 + 1) xx (7))] + "k"`
= `14000 [(7x + 4)^(1/2)/((7/2))] + 18000`
= `14000 xx 2/7 xx (sqrt(7x + 4)) + 18000`
∴ Total cost C = `4000 [sqrt(7x + 4)] + 18000`
Average cost A.C = `("C"(x))/x`
= `(4000[sqrt(7x + 4)] + 18000)/x`
A.C = `4000/x sqrt(7x + 4) + 18000/x`
APPEARS IN
संबंधित प्रश्न
The marginal revenue (in thousands of Rupees) functions for a particular commodity is `5 + 3"e"^(- 003x)` where x denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given e–3 = 0.05 approximately)
If the marginal revenue function for a commodity is MR = 9 – 4x2. Find the demand function.
Given the marginal revenue function `4/(2x + 3)^2 - 1` show that the average revenue function is P = `4/(6x + 9) - 1`
The demand function for a commodity is p = e–x .Find the consumer’s surplus when p = 0.5
Choose the correct alternative:
The demand and supply functions are given by D(x) = 16 – x2 and S(x) = 2x2 + 4 are under perfect competition, then the equilibrium price x is
Choose the correct alternative:
When x0 = 2 and P0 = 12 the producer’s surplus for the supply function Ps = 2x2 + 4 is
Choose the correct alternative:
The producer’s surplus when the supply function for a commodity is P = 3 + x and x0 = 3 is
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units
The marginal cost of production of a firm is given by C'(x) = `20 + x/20` the marginal revenue is given by R’(x) = 30 and the fixed cost is ₹ 100. Find the profit function
The demand equation for a product is Pd = 20 – 5x and the supply equation is Ps = 4x + 8. Determine the consumers surplus and producer’s surplus under market equilibrium