Advertisements
Advertisements
प्रश्न
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units
उत्तर
MC = `125 + 10x - x^2/9`
Fixed cost k = ₹ 250
C = `int "MC" "d"x - int (125 + 10x - x^2/9) "d"x`
C = `125x + (10x^2)/9 - x^3/(9 xx 3) + "k"`
C = `125x + 5x^2 - x^3/27 + 250`
When x = 15
C = `125(15) + 5(15)^2 - (15)^3/27 + 250`
= 1875 + 1125 – 125 + 250
C = ₹ 3,125
APPEARS IN
संबंधित प्रश्न
If the marginal cost function of x units of output is `"a"/sqrt("a"x + "b")` and if the cost of output is zero. Find the total cost as a function of x
A firm’s marginal revenue function is MR = `20"e"^((-x)/10) (1 - x/10)`. Find the corresponding demand function
If MR = 20 – 5x + 3x2, Find total revenue function
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
The demand function for a commodity is p =`36/(x + 4)`. Find the consumer’s surplus when the prevailing market price is ₹ 6
The demand equation for a products is x = `sqrt(100 - "p")` and the supply equation is x = `"P"/2 - 10`. Determine the consumer’s surplus and producer’s surplus, under market equilibrium
Find the consumer’s surplus and producer’s surplus for the demand function pd = 25 – 3x and supply function ps = 5 + 2x
Choose the correct alternative:
If the marginal revenue MR = 35 + 7x – 3x2, then the average revenue AR is
Choose the correct alternative:
When x0 = 2 and P0 = 12 the producer’s surplus for the supply function Ps = 2x2 + 4 is
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is