Advertisements
Advertisements
प्रश्न
If the marginal cost function of x units of output is `"a"/sqrt("a"x + "b")` and if the cost of output is zero. Find the total cost as a function of x
उत्तर
M.C = `"a"/sqrt("a"x + "b")`
Total cost function
C = `int ("M.C") "d"x`
C = `int "a"("a"x + "b")^(1/2) "d"x`
= `int "a"("a"x + "b")^((-1)/2) "d"x + "k"`
= `"a"[(("a"x + "b")^((-1)/2) + 1)/(((-1)/2 + 1) xx ("a"))] + "k"`
C = `[("a"x + "b")^(1/2)/((1/2))] + "k"`
∴ C(x) = `2("a"x + "b")^(1/2)` ........(1)
When x = 0
Equation (1)
⇒ 0 = `2["a"(0) + "b"]^(1/2) + "k"`
k = `-2("b")^(1/2)`
⇒ k = `-2sqrt("b")`
Required cost function
C(x) = `2("a"x + "b")^(1/2) - 2sqrt("b")`
∴ C = `2sqrt("a"x + "b") - 2sqrt("b")`
APPEARS IN
संबंधित प्रश्न
The cost of an overhaul of an engine is ₹ 10,000 The operating cost per hour is at the rate of 2x – 240 where the engine has run x km. Find out the total cost if the engine runs for 300 hours after overhaul
The elasticity of demand with respect to price for a commodity is given by `((4 - x))/x`, where p is the price when demand is x. Find the demand function when the price is 4 and the demand is 2. Also, find the revenue function
Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is C'(x) = `x^2/200 + 4`
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
Choose the correct alternative:
The marginal revenue and marginal cost functions of a company are MR = 30 – 6x and MC = – 24 + 3x where x is the product, then the profit function is
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to
For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function