Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to
विकल्प
3
6
9
5
उत्तर
9
APPEARS IN
संबंधित प्रश्न
The marginal revenue (in thousands of Rupees) functions for a particular commodity is `5 + 3"e"^(- 003x)` where x denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given e–3 = 0.05 approximately)
If the marginal cost (MC) of production of the company is directly proportional to the number of units (x) produced, then find the total cost function, when the fixed cost is ₹ 5,000 and the cost of producing 50 units is ₹ 5,625
If MR = 14 – 6x + 9x2, Find the demand function
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Find the consumer’s surplus and producer’s surplus for the demand function pd = 25 – 3x and supply function ps = 5 + 2x
Choose the correct alternative:
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
The demand and supply function of a commodity are P(x) = (x – 5)2 and S(x) = x2 + x + 3 then the equilibrium quantity x0 is
Choose the correct alternative:
If the marginal revenue of a firm is constant, then the demand function is