Advertisements
Advertisements
प्रश्न
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`
उत्तर
MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`
= `(2(x + 3) - 2x)/(x + 3)^2 + 5`
= `(2x + 6 - 2x)/(x + 3)^ + 5`
MR = `6/(x +3)^2 + 5`
Revenue function R = `int "MR" "dx`
= `int [6/(x + 3)^2 + 5] "d"x`
= `6int [(x + 3)^-2 + 5] "d"x`
R = `6[(x + 3)^(-2 + 1)/((-2 + 1))] + 5x + "k"`
R = `(6(x + 3)^-1)/(-1) + 5x + "k"`
R = `(-6)/((x + 3)) + 5x + "k"` .......(1)
When x = 0
R = 0
⇒ 0 = `(-6)/((0 + 3)) + 5(0) + "k"`
0 = `-2 + "k"`
⇒ k = 2
From (1)
⇒ R = `(-6)/((x + 3)) + 5x + 2`
= `2 - 6/((x + 3)) + 5x`
= `(2(x + 3) - 6)/((x + 3)) + 5x`
= `(2x + 6 - 6)/((x + 3)) + 5x`
R = `(2x)/((x + 3)) + 5x`
The demand function P = `"R"/x`
= `([(2x)/((x + 3)) + 5x])/x`
= `(x[2/(x + 3) + 5])/x`
∴ P = `2/((x + 3)) + 5`
Hence proved
APPEARS IN
संबंधित प्रश्न
The cost of an overhaul of an engine is ₹ 10,000 The operating cost per hour is at the rate of 2x – 240 where the engine has run x km. Find out the total cost if the engine runs for 300 hours after overhaul
If the marginal revenue function for a commodity is MR = 9 – 4x2. Find the demand function.
Calculate the producer’s surplus at x = 5 for the supply function p = 7 + x
The demand function for a commodity is p =`36/(x + 4)`. Find the consumer’s surplus when the prevailing market price is ₹ 6
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
If the marginal revenue MR = 35 + 7x – 3x2, then the average revenue AR is
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
The producer’s surplus when the supply function for a commodity is P = 3 + x and x0 = 3 is
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units