Advertisements
Advertisements
प्रश्न
The marginal revenue function for a firm given by MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`. Show that the demand function is P = `(2x)/(x + 3)^2 + 5`
उत्तर
MR = `2/(x + 3) - (2x)/(x + 3)^2 + 5`
= `(2(x + 3) - 2x)/(x + 3)^2 + 5`
= `(2x + 6 - 2x)/(x + 3)^ + 5`
MR = `6/(x +3)^2 + 5`
Revenue function R = `int "MR" "dx`
= `int [6/(x + 3)^2 + 5] "d"x`
= `6int [(x + 3)^-2 + 5] "d"x`
R = `6[(x + 3)^(-2 + 1)/((-2 + 1))] + 5x + "k"`
R = `(6(x + 3)^-1)/(-1) + 5x + "k"`
R = `(-6)/((x + 3)) + 5x + "k"` .......(1)
When x = 0
R = 0
⇒ 0 = `(-6)/((0 + 3)) + 5(0) + "k"`
0 = `-2 + "k"`
⇒ k = 2
From (1)
⇒ R = `(-6)/((x + 3)) + 5x + 2`
= `2 - 6/((x + 3)) + 5x`
= `(2(x + 3) - 6)/((x + 3)) + 5x`
= `(2x + 6 - 6)/((x + 3)) + 5x`
R = `(2x)/((x + 3)) + 5x`
The demand function P = `"R"/x`
= `([(2x)/((x + 3)) + 5x])/x`
= `(x[2/(x + 3) + 5])/x`
∴ P = `2/((x + 3)) + 5`
Hence proved
APPEARS IN
संबंधित प्रश्न
The cost of an overhaul of an engine is ₹ 10,000 The operating cost per hour is at the rate of 2x – 240 where the engine has run x km. Find out the total cost if the engine runs for 300 hours after overhaul
The marginal cost function of a product is given by `"dc"/("d"x)` = 100 – 10x + 0.1x2 where x is the output. Obtain the total and the average cost function of the firm under the assumption, that its fixed cost is ₹ 500
If the marginal cost function of x units of output is `"a"/sqrt("a"x + "b")` and if the cost of output is zero. Find the total cost as a function of x
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
The marginal cost function of a commodity is given by MC = `14000/sqrt(7x + 4)` and the fixed cost is ₹ 18,000. Find the total cost and average cost
The demand function p = 85 – 5x and supply function p = 3x – 35. Calculate the equilibrium price and quantity demanded. Also, calculate consumer’s surplus
Choose the correct alternative:
The demand function for the marginal function MR = 100 – 9x2 is
For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function
The demand equation for a product is Pd = 20 – 5x and the supply equation is Ps = 4x + 8. Determine the consumers surplus and producer’s surplus under market equilibrium
A company requires f(x) number of hours to produce 500 units. It is represented by f(x) = 1800x–0.4. Find out the number of hours required to produce additional 400 units. [(900)0.6 = 59.22, (500)0.6 = 41.63]