Advertisements
Advertisements
प्रश्न
The cost of an overhaul of an engine is ₹ 10,000 The operating cost per hour is at the rate of 2x – 240 where the engine has run x km. Find out the total cost if the engine runs for 300 hours after overhaul
उत्तर
Given that the overhaul cost is ₹ 10,000.
The marginal cost is 2x – 240
MC = 2x – 240
C = `int "MC" "d"x + "k"`
C = x2 – 240x + k
k is the overhaul cost
⇒ k = 10,000
So C = x2 – 240x + 10,000
When x = 300 hours, total cost is
C = (300)2 – 240(300) + 10,000
⇒ C = 90,000 – 72000 + 10,000
⇒ C = 28,000
So the total cost of the engine run for 300 hours after the overhaul is ₹ 28,000.
APPEARS IN
संबंधित प्रश्न
A company receives a shipment of 500 scooters every 30 days. From experience, it is known that the inventory on hand is related to the number of days x. Since the shipment, I(x) = 500 – 0.03x2, the daily holding cost per scooter is ₹ 0.3. Determine the total cost for maintaining inventory for 30 days
An account fetches interest at the rate of 5% per annum compounded continuously. An individual deposits ₹ 1,000 each year in his account. How much will be in the account after 5 years. (e0.25 = 1.284)
If MR = 20 – 5x + 3x2, Find total revenue function
If MR = 14 – 6x + 9x2, Find the demand function
Calculate consumer’s surplus if the demand function p = 122 – 5x – 2x2, and x = 6
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
The marginal revenue and marginal cost functions of a company are MR = 30 – 6x and MC = – 24 + 3x where x is the product, then the profit function is
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
The producer’s surplus when the supply function for a commodity is P = 3 + x and x0 = 3 is
Choose the correct alternative:
If the marginal revenue of a firm is constant, then the demand function is