Advertisements
Advertisements
प्रश्न
Elasticity of a function `("E"y)/("E"x)` is given by `("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`. Find the function when x = 2, y = `3/8`
उत्तर
`("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`
`x/y ("d"y)/("d"x) = (-7x)/((1 - 2x)(2 + 3x))`
`1/y "d"y = (-x)/(x(1 - 2x)(2 + 3x)) "d"x`
`1/y "d"y = (-7)/((1 - 2x)(2 + 3x)) "d"x`
`1/y "d"y = 7/((2x - 1)(3x + 2)) "d"x` .......(1)
Let `7/((2x + 1)(3x + 2)) = "A"/((2x - 1)) + "B"/((3x + 2))`
`7/((2x - 1)(3x + 2)) = ("A"(3x + 2) + "B"(2x - 1))/((2x - 1)(3x + 2))`
7 = A(3x + 2) + B(2x – 1)
Put x = `1/2`
7 = `"A"(3(1/2) + 2) + "B"(2(1/2) - 1)`
7 = `"A"(3/2 + 2) + "B"(1 - 1)`
7 = `"A"((3 + 4)/2) + "B"(0)`
7 = `"A"(7/2)`
⇒ A = 2
Put x = 0
7 = A(3(0) + 2) + B(2(0) – 1)
7 = A(2) + B(– 1)
7 = (2)(2) – B
B = 4 – 7
B = – 3
⇒ `1/y "d"y = 7/((2x - 1)(3x + 2)) "d"x`
`1/y "d"y = [2/((2x - 1)) - 3/((3x + 2))] "d"x`
Integrating on both sides
`int 1/y "d"y = int 2/((2x - 1)) "d"x - int 3/((3x + 2)) "d"x`
`log |y| = log |2x - 1| - log |3x + 2| + log "k"`
log [y] = `log (("k"(2x - 1))/((3x + 2)))`
⇒ y = `("k"(2x - 1))/((3x + 2))`
⇒ (2)
When x = 2
y = `3/8`
`3/8 = ("k"[2(2) - 1])/[3(2) + 2]`
= `("k"[3])/8`
k = `3/8 xx 8/3`
⇒ k = 1
Equation (2)
∴ y = `((2x - 1))/((3x + 2))`
APPEARS IN
संबंधित प्रश्न
A company receives a shipment of 500 scooters every 30 days. From experience, it is known that the inventory on hand is related to the number of days x. Since the shipment, I(x) = 500 – 0.03x2, the daily holding cost per scooter is ₹ 0.3. Determine the total cost for maintaining inventory for 30 days
Calculate consumer’s surplus if the demand function p = 122 – 5x – 2x2, and x = 6
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
The demand function for the marginal function MR = 100 – 9x2 is
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units
For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function
The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.