मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य इयत्ता १२

Elasticity of a function EEEyEx is given by EEEyEx=-7x(1-2x)(2+3x). Find the function when x = 2, y = 38 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Elasticity of a function `("E"y)/("E"x)` is given by `("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`. Find the function when x = 2, y = `3/8`

बेरीज

उत्तर

`("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`

`x/y ("d"y)/("d"x) = (-7x)/((1 - 2x)(2 + 3x))`

`1/y "d"y = (-x)/(x(1 - 2x)(2 + 3x))  "d"x`

`1/y "d"y = (-7)/((1 - 2x)(2 + 3x))  "d"x`

`1/y "d"y = 7/((2x - 1)(3x + 2))  "d"x`  .......(1)

Let `7/((2x + 1)(3x + 2)) = "A"/((2x - 1)) + "B"/((3x + 2))`

`7/((2x - 1)(3x + 2)) = ("A"(3x + 2) + "B"(2x - 1))/((2x - 1)(3x + 2))`

7 = A(3x + 2) + B(2x – 1)

Put x = `1/2`

7 = `"A"(3(1/2) + 2) + "B"(2(1/2) - 1)`

7 = `"A"(3/2 + 2) + "B"(1 - 1)`

7 = `"A"((3 + 4)/2) + "B"(0)`

7 = `"A"(7/2)`

⇒ A = 2

Put x = 0

7 = A(3(0) + 2) + B(2(0) – 1)

7 = A(2) + B(– 1)

7 = (2)(2) – B

B = 4 – 7

B = – 3

⇒ `1/y  "d"y = 7/((2x - 1)(3x + 2))  "d"x`

`1/y "d"y = [2/((2x - 1)) - 3/((3x + 2))]  "d"x`

Integrating on both sides

`int 1/y "d"y = int 2/((2x - 1))  "d"x - int 3/((3x + 2))  "d"x`

`log |y| = log |2x - 1| - log |3x + 2| + log "k"`

log [y] = `log (("k"(2x - 1))/((3x + 2)))`

⇒ y = `("k"(2x - 1))/((3x + 2))`

⇒ (2)

When x = 2

y = `3/8`

`3/8 = ("k"[2(2) - 1])/[3(2) + 2]`

= `("k"[3])/8`

k = `3/8 xx 8/3`

⇒ k = 1

Equation (2)

∴ y = `((2x - 1))/((3x + 2))`

shaalaa.com
Application of Integration in Economics and Commerce
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Integral Calculus – 2 - Exercise 3.2 [पृष्ठ ७२]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
पाठ 3 Integral Calculus – 2
Exercise 3.2 | Q 2 | पृष्ठ ७२

संबंधित प्रश्‍न

A company receives a shipment of 500 scooters every 30 days. From experience, it is known that the inventory on hand is related to the number of days x. Since the shipment, I(x) = 500 – 0.03x2, the daily holding cost per scooter is ₹ 0.3. Determine the total cost for maintaining inventory for 30 days


Calculate consumer’s surplus if the demand function p = 122 – 5x – 2x2, and x = 6


Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus


Choose the correct alternative:

If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is


Choose the correct alternative:

The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is


Choose the correct alternative:

For the demand function p(x), the elasticity of demand with respect to price is unity then


Choose the correct alternative:

The demand function for the marginal function MR = 100 – 9x2 is


A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units


For the marginal revenue function MR = 6 – 3x2 – x3, Find the revenue function and demand function


The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×