Advertisements
Advertisements
Question
Elasticity of a function `("E"y)/("E"x)` is given by `("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`. Find the function when x = 2, y = `3/8`
Solution
`("E"y)/("E"x) = (-7x)/((1 - 2x)(2 + 3x))`
`x/y ("d"y)/("d"x) = (-7x)/((1 - 2x)(2 + 3x))`
`1/y "d"y = (-x)/(x(1 - 2x)(2 + 3x)) "d"x`
`1/y "d"y = (-7)/((1 - 2x)(2 + 3x)) "d"x`
`1/y "d"y = 7/((2x - 1)(3x + 2)) "d"x` .......(1)
Let `7/((2x + 1)(3x + 2)) = "A"/((2x - 1)) + "B"/((3x + 2))`
`7/((2x - 1)(3x + 2)) = ("A"(3x + 2) + "B"(2x - 1))/((2x - 1)(3x + 2))`
7 = A(3x + 2) + B(2x – 1)
Put x = `1/2`
7 = `"A"(3(1/2) + 2) + "B"(2(1/2) - 1)`
7 = `"A"(3/2 + 2) + "B"(1 - 1)`
7 = `"A"((3 + 4)/2) + "B"(0)`
7 = `"A"(7/2)`
⇒ A = 2
Put x = 0
7 = A(3(0) + 2) + B(2(0) – 1)
7 = A(2) + B(– 1)
7 = (2)(2) – B
B = 4 – 7
B = – 3
⇒ `1/y "d"y = 7/((2x - 1)(3x + 2)) "d"x`
`1/y "d"y = [2/((2x - 1)) - 3/((3x + 2))] "d"x`
Integrating on both sides
`int 1/y "d"y = int 2/((2x - 1)) "d"x - int 3/((3x + 2)) "d"x`
`log |y| = log |2x - 1| - log |3x + 2| + log "k"`
log [y] = `log (("k"(2x - 1))/((3x + 2)))`
⇒ y = `("k"(2x - 1))/((3x + 2))`
⇒ (2)
When x = 2
y = `3/8`
`3/8 = ("k"[2(2) - 1])/[3(2) + 2]`
= `("k"[3])/8`
k = `3/8 xx 8/3`
⇒ k = 1
Equation (2)
∴ y = `((2x - 1))/((3x + 2))`
APPEARS IN
RELATED QUESTIONS
The marginal revenue (in thousands of Rupees) functions for a particular commodity is `5 + 3"e"^(- 003x)` where x denotes the number of units sold. Determine the total revenue from the sale of 100 units. (Given e–3 = 0.05 approximately)
Given the marginal revenue function `4/(2x + 3)^2 - 1` show that the average revenue function is P = `4/(6x + 9) - 1`
A firm’s marginal revenue function is MR = `20"e"^((-x)/10) (1 - x/10)`. Find the corresponding demand function
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
If the marginal revenue function is R'(x) = 1500 – 4x – 3x2. Find the revenue function and average revenue function
If MR = 20 – 5x + 3x2, Find total revenue function
Find the consumer’s surplus and producer’s surplus for the demand function pd = 25 – 3x and supply function ps = 5 + 2x
Choose the correct alternative:
The producer’s surplus when the supply function for a commodity is P = 3 + x and x0 = 3 is
Choose the correct alternative:
The demand and supply function of a commodity are D(x) = 25 – 2x and S(x) = `(10 + x)/4` then the equilibrium price p0 is
The marginal cost of production of a firm is given by C'(x) = `20 + x/20` the marginal revenue is given by R’(x) = 30 and the fixed cost is ₹ 100. Find the profit function