Advertisements
Advertisements
प्रश्न
If the marginal revenue function is R'(x) = 1500 – 4x – 3x2. Find the revenue function and average revenue function
उत्तर
Given marginal revenue function
MR = R’(x)= 1500 – 4x – 3x2
Revenue function R(x) = `int "R'"(x) "d"x + "c"`
R = `int (1500 - 4x - 3x^2) "d"x + "c"`
R = 1500x – 2x2 – x3 + c
When x = 0
R = 0
⇒ c = 0
So R = 1500x – 2x2 – x3
Average revenue function P = `"R"/x` ⇒ 1500 – 2x – x2
APPEARS IN
संबंधित प्रश्न
The cost of an overhaul of an engine is ₹ 10,000 The operating cost per hour is at the rate of 2x – 240 where the engine has run x km. Find out the total cost if the engine runs for 300 hours after overhaul
Determine the cost of producing 200 air conditioners if the marginal cost (is per unit) is C'(x) = `x^2/200 + 4`
Given the marginal revenue function `4/(2x + 3)^2 - 1` show that the average revenue function is P = `4/(6x + 9) - 1`
A firm’s marginal revenue function is MR = `20"e"^((-x)/10) (1 - x/10)`. Find the corresponding demand function
The demand function for a commodity is p =`36/(x + 4)`. Find the consumer’s surplus when the prevailing market price is ₹ 6
The demand and supply functions under perfect competition are pd = 1600 – x2 and ps = 2x2 + 400 respectively. Find the producer’s surplus
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
The demand and supply function of a commodity are D(x) = 25 – 2x and S(x) = `(10 + x)/4` then the equilibrium price p0 is
The demand equation for a product is Pd = 20 – 5x and the supply equation is Ps = 4x + 8. Determine the consumers surplus and producer’s surplus under market equilibrium
The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.