Advertisements
Advertisements
Question
A company receives a shipment of 500 scooters every 30 days. From experience, it is known that the inventory on hand is related to the number of days x. Since the shipment, I(x) = 500 – 0.03x2, the daily holding cost per scooter is ₹ 0.3. Determine the total cost for maintaining inventory for 30 days
Solution
Here I(x) = 500 – 0.03x2
C1 = ₹ 0.3
T = 30
Total inventory carrying cost
= `"C"^1 int_0^"T""I"(x) "d"x`
= `0.3 int_0^30 (500 - 0.03x^2) "d"x`
= `0.3[500x - 0.03 (x^3/3)]_0^30`
= `0.3[500x - 0.01x^3]_0^30`
= 0.3[500(30) – 0.01 (30)3] – [0]
= 0.3[15000 – 0.01(27000)]
= 0.3[15000 – 270]
= 0.3[14730]
= ₹ 4,419
APPEARS IN
RELATED QUESTIONS
If the marginal revenue function is R'(x) = 1500 – 4x – 3x2. Find the revenue function and average revenue function
Find the revenue function and the demand function if the marginal revenue for x units is MR = 10 + 3x – x2
The marginal cost function of a commodity is given by MC = `14000/sqrt(7x + 4)` and the fixed cost is ₹ 18,000. Find the total cost and average cost
Choose the correct alternative:
The given demand and supply function are given by D(x) = 20 – 5x and S(x) = 4x + 8 if they are under perfect competition then the equilibrium demand is
Choose the correct alternative:
For the demand function p(x), the elasticity of demand with respect to price is unity then
Choose the correct alternative:
The marginal cost function is MC = `100sqrt(x)`. find AC given that TC = 0 when the output is zero is
Choose the correct alternative:
The demand and supply function of a commodity are P(x) = (x – 5)2 and S(x) = x2 + x + 3 then the equilibrium quantity x0 is
A manufacture’s marginal revenue function is given by MR = 275 – x – 0.3x2. Find the increase in the manufactures total revenue if the production is increased from 10 to 20 units
A company has determined that marginal cost function for x product of a particular commodity is given by MC = `125 + 10x - x^2/9`. Where C is the cost of producing x units of the commodity. If the fixed cost is ₹ 250 what is the cost of producing 15 units
A company requires f(x) number of hours to produce 500 units. It is represented by f(x) = 1800x–0.4. Find out the number of hours required to produce additional 400 units. [(900)0.6 = 59.22, (500)0.6 = 41.63]