Advertisements
Advertisements
Question
The marginal cost function is MC = `300 x^(2/5)` and fixed cost is zero. Find out the total cost and average cost functions
Solution
MC = `300 x^(2/5)` and fixed cost k = 0
Total cost t = `int"MC" "d"x`
C = `int300 x^(2/5) "d"x`
= `300 (x^(2/5 + 1))/((2/5 + 1)) + "k"`
C = `300[x^(7/5)/((7/5))] + 0`
∴ C = `1500/7 x^(7/5)`
Average cost A.C = `"C"/x = (1500/7 x^(7/5))/x`
A.C = `1500/7 x^(7/5 - 1)`
∴ A.C = `1500/7 x^(2/5)`
APPEARS IN
RELATED QUESTIONS
If the marginal cost function of x units of output is `"a"/sqrt("a"x + "b")` and if the cost of output is zero. Find the total cost as a function of x
The marginal cost of production of a firm is given by C'(x) = 5 + 0.13x, the marginal revenue is given by R'(x) = 18 and the fixed cost is ₹ 120. Find the profit function
If the supply function for a product is p = 3x + 5x2. Find the producer’s surplus when x = 4
Under perfect competition for a commodity the demand and supply laws are Pd = `8/(x + 1) - 2` and Ps = `(x + 3)/2` respectively. Find the consumer’s and producer’s surplus
Choose the correct alternative:
If MR and MC denotes the marginal revenue and marginal cost functions, then the profit functions is
Choose the correct alternative:
The profit of a function p(x) is maximum when
Choose the correct alternative:
If MR and MC denote the marginal revenue and marginal cost and MR – MC = 36x – 3x2 – 81, then the maximum profit at x is equal to
A manufacture’s marginal revenue function is given by MR = 275 – x – 0.3x2. Find the increase in the manufactures total revenue if the production is increased from 10 to 20 units
The demand equation for a product is Pd = 20 – 5x and the supply equation is Ps = 4x + 8. Determine the consumers surplus and producer’s surplus under market equilibrium
The price elasticity of demand for a commodity is `"p"/x^3`. Find the demand function if the quantity of demand is 3 when the price is ₹ 2.