English

If a R = ∣ ∣ ∣ ∣ ∣ 1 R 2 R 2 N N 2 N N ( N + 1 ) 2 2 N + 1 ∣ ∣ ∣ ∣ ∣ , Then the Value of N ∑ R = 1 a R is (A) N (B) 2n (C) − 2n (D) N2 - Mathematics

Advertisements
Advertisements

Question

If \[A_r = \begin{vmatrix}1 & r & 2^r \\ 2 & n & n^2 \\ n & \frac{n \left( n + 1 \right)}{2} & 2^{n + 1}\end{vmatrix}\] , then the value of \[\sum^n_{r = 1} A_r\] is

Options

  • n

  • 2n

  • − 2n

  •  n2

  • None of these

MCQ

Solution

\[A_r = \begin{vmatrix} 1 & r &2^r \\2 & n & n^2 \\n &  \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} \end{vmatrix}\]
\[ \Rightarrow \sum^n_{r = 1} A_r = \begin{vmatrix} \sum^n_{r = 1} 1 & \sum^n_{r = 1} r & \sum^n_{r = 1} 2^r \\ \sum^n_{r = 1} 2 & n & n^2 \\n & \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} \end{vmatrix}\]
\[As \sum^n_{r = 1} 1 = 1 + 1 + 1 . . . + 1 (\text{n times}) = n\]
\[ \sum^n_{r = 1} r = 1 + 2 + 3 + . . . + n = \frac{n\left( n + 1 \right)}{2} \]
\[Let S = \sum^n_{r = 1} 2^r = 2 + 2^2 + 2^3 = . . . + 2^n \]
\[2S = 2^2 + 2^3 = . . . + 2^n + 2^{n + 1} \]
\[ \Rightarrow 2S - S = S = \sum^n_{r = 1} 2^r = 2^{n + 1} - 2\]
\[ \Rightarrow \sum^n_{r = 1} A_r = \begin{vmatrix} n & \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} - 2\\2n & n & n^2 \\ n & \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} \end{vmatrix} \]
\[\left[\text{ Applying }R_1 \to R_1 - R_2 \right]\]
\[ \sum^n_{r = 1} A_r = \begin{vmatrix} n - n & \frac{n\left( n + 1 \right)}{2} - \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} - 2 - 2^{n + 1} \\2n & n & n^2 \\ n & \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} \end{vmatrix}\]
\[ = \begin{vmatrix} 0 & 0 & - 2\\2n & n & n^2 \\ n & \frac{n\left( n + 1 \right)}{2} & 2^{n + 1} \end{vmatrix}\]
\[ = - 2 \times \begin{vmatrix} 2n & n \\ n & \frac{n\left( n + 1 \right)}{2} \end{vmatrix}\]
\[ = - 2\left[ n^3 + n^2 - n^2 \right]\]
\[ = - 2 n^3 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.7 [Page 94]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.7 | Q 14 | Page 94

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Evaluate the determinant.

`|(2,4),(-5, -1)|`


Which of the following is correct?

A. Determinant is a square matrix.

B. Determinant is a number associated to a matrix.

C. Determinant is a number associated to a square matrix.

D. None of these


What is the value of the determinant \[\begin{vmatrix}0 & 2 & 0 \\ 2 & 3 & 4 \\ 4 & 5 & 6\end{vmatrix} ?\]


Write the value of the determinant \[\begin{vmatrix}p & p + 1 \\ p - 1 & p\end{vmatrix}\]


Write the value of the determinant \[\begin{vmatrix}x + y & y + z & z + x \\ z & x & y \\ - 3 & - 3 & - 3\end{vmatrix}\]


If the determinant \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0 \text{ is }\] 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          


Given that:  A = `((1,-1,0),(2,3,4),(0,1,2))`  and B = `((2,2,-4),(-4,2,-4),(2,-1,5))`  , find AB. Using this result, solve the following system of equation: x – y = 3, 2x + 3y + 4z = 17 and y + 2z = 7. 


If `omega` is a non-real cube root of unity and n is not a multiple of 3, then `Delta = abs ((1, omega^n, omega^(2n)),(omega^(2n), 1, omega^n),(omega^n, omega^(2n), 1))` is equal to ____________.


If ω is non real cube root of unity, then `abs ((2, 2omega, -omega^2),(1,1,1),(1,-1,0))` is equal to ____________.


A non-trivial solution of the system of equations x + λy + 2z = 0, 2x + λz = 0, 2λx - 2y + 3z = 0 is given by x : y : z = ____________.


If 4x + 3y + 6z = 25, x + 5y + 7z = 13, 2x + 9y + z = 1, then z = ____________.


If the equations 2x + 3y + z = 0, 3x + y - 2z = 0 and ax + 2y - bz = 0 has non-trivial solution, then ____________.


Find the area of the triangle with vertices P(4, 5), Q(4, -2), and R(-6, 2).


If `|(2, 4),(5, 1)| = |(2x, 4),(6, x)|`, then the possible value(s) of ‘x’ is/are ______.


Find the value of the determinant given below, without expanding it at any stage.

`|(βγ, 1, α(β + γ)),(γα, 1, β(γ + α)),(αβ, 1, γ(α + β))|`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×