Advertisements
Advertisements
Question
If sin A = `1/2` and cos B = `1/sqrt2`, then find the value of sin A sin B + cos A cos B.
Sum
Solution
Given that,
sin A = `1/2` and cos B = `1/sqrt2`
cos A = `sqrt(1 - sin^2 A)`
= `sqrt(1 - (1/2)^2)`
= `sqrt(1 - 1/4)`
= `sqrt(3/4)`
= `sqrt3/2`
sin B = `sqrt(1 - cos^2 B)`
= `sqrt(1 - (1/sqrt2)^2)`
= `sqrt(1 - 1/2)`
= `sqrt(1/2)`
= `1/sqrt2`
⇒ sin A sin B + cos A cos B
⇒ `1/2 xx 1/sqrt2 + sqrt3/2 xx 1/sqrt2`
⇒ `1/(2sqrt2) + sqrt3/(2sqrt2)`
⇒ `(1 + sqrt3)/(2sqrt2)`
shaalaa.com
Is there an error in this question or solution?