Advertisements
Advertisements
Question
If sin y = x cos(a + y), then `dx/dy` is ______.
Options
`cosa/(cos^2(a + y))`
`(-cosa)/(cos^2(a + y))`
`cosa/(sin^2y)`
`(-cosa)/(sin^2y)`
MCQ
Fill in the Blanks
Solution
If sin y = x cos(a + y), then `dx/dy` is `underlinebb(cosa/(cos^2(a + y)))`.
Explanation:
Given, sin y = x cos(a + y)
`\implies x = siny/(cos(a + y))`
Differentiating with respect to y, we get
`dx/dy = (cos(a + y)d/dy (siny) - siny d/dy {cos(a + y)})/(cos^2(a + y))`
`\implies dx/dy = (cos(a + y)cosy - siny[-sin(a + y)])/(cos^2(a + y))`
`\implies dx/dy = (cos(a + y)cosy + sinysin(a + y))/(cos^2(a + y))`
`\implies dx/dy = (cos[(a + y) - y])/(cos^2(a + y))`
`\implies dx/dy = cosa/(cos^2(a + y))`
shaalaa.com
Is there an error in this question or solution?