Advertisements
Advertisements
प्रश्न
If sin y = x cos(a + y), then `dx/dy` is ______.
विकल्प
`cosa/(cos^2(a + y))`
`(-cosa)/(cos^2(a + y))`
`cosa/(sin^2y)`
`(-cosa)/(sin^2y)`
MCQ
रिक्त स्थान भरें
उत्तर
If sin y = x cos(a + y), then `dx/dy` is `underlinebb(cosa/(cos^2(a + y)))`.
Explanation:
Given, sin y = x cos(a + y)
`\implies x = siny/(cos(a + y))`
Differentiating with respect to y, we get
`dx/dy = (cos(a + y)d/dy (siny) - siny d/dy {cos(a + y)})/(cos^2(a + y))`
`\implies dx/dy = (cos(a + y)cosy - siny[-sin(a + y)])/(cos^2(a + y))`
`\implies dx/dy = (cos(a + y)cosy + sinysin(a + y))/(cos^2(a + y))`
`\implies dx/dy = (cos[(a + y) - y])/(cos^2(a + y))`
`\implies dx/dy = cosa/(cos^2(a + y))`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?