English

If Sn Denotes the Sum of the First N Terms of an A.P., Prove that S30 = 3(S20 − S10) - Mathematics

Advertisements
Advertisements

Question

If Sn denotes the sum of the first n terms of an A.P., prove that S30 = 3(S20 − S10)

 
Sum

Solution

Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn = \[\frac{n}{2}\] [2a + (n − 1)d]

Now,
S10 = \[\frac{10}{2}\] [2a + (10 − 1)d]
      = 5(2a + 9d)
      = 10a + 45d          ....(1) 


S20 = \[\frac{20}{2}\] [2a + (20 − 1)d]
      = 10(2a + 19d)
      = 20a + 190d        ....(2) 

S30 = \[\frac{30}{2}\] 302[2a + (30 − 1)d]
      = 15(2a + 29d)
      = 30a + 435d        ....(3)

On subtracting (1) from (2), we get
S20 − S10 = 20a + 190d − (10a + 45d)
                = 10a + 145d

On multiplying both sides by 3, we get
3(S20 − S10) = 3(10a + 145d)
                    = 30a + 435d
                    = S
30                   [From (3)]

Hence, S30 = 3(S20 − S10)

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progression - Exercise 5.6 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 5 Arithmetic Progression
Exercise 5.6 | Q 70 | Page 55
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×