English
Tamil Nadu Board of Secondary EducationSSLC (English Medium) Class 10

If the roots of the equation (c2 – ab)x2 – 2(a2 – bc)x + b2 – ac = 0 are real and equal prove that either a = 0 (or) a3 + b3 + c3 = 3abc - Mathematics

Advertisements
Advertisements

Question

If the roots of the equation (c2 – ab)x2 – 2(a2 – bc)x + b2 – ac = 0 are real and equal prove that either a = 0 (or) a3 + b3 + c3 = 3abc

Sum

Solution

(c2 – ab)x2 – 2(a2 – bc)x + b2 – ac = 0

Here a = c2 – ab; b = – 2(a2 – bc); c = b2 – ac

Since the roots are real and equal

∆ = b2 – 4ac

[– 2(a2 – bc)]2 – 4(c2 – ab) (b2 – ac) = 0

4(a2 – bc)2 – 4[c2 b2 – ac3 – ab3 + a2bc] = 0

Divided by 4 we get

(a2 – bc)2 – [c2 b2 – ac3 – ab3 + a2bc] = 0

a4 + b2 c2 – 2a2 bc – c2b2 + ac3 + ab3 – a2bc = 0

a4 + ab3 + ac3 – 3a2bc = 0

= a(a3 + b3 + c3) = 3a2bc

a3 + b3 + c3 = `(3"a"^2"bc")/"a"`

a3 + b3 + c3 = 3abc

Hence it is proved

shaalaa.com
Quadratic Equations
  Is there an error in this question or solution?
Chapter 3: Algebra - Exercise 3.13 [Page 119]

APPEARS IN

Samacheer Kalvi Mathematics [English] Class 10 SSLC TN Board
Chapter 3 Algebra
Exercise 3.13 | Q 5 | Page 119
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×