Advertisements
Advertisements
Question
If the system of equations 3x + y = 1 and (2k – 1)x + (k – 1)y = 2k + 1 is inconsistent, then k = ______.
Options
–1
0
1
2
Solution
If the system of equations 3x + y = 1 and (2k – 1)x + (k – 1)y = 2k + 1 is inconsistent, then k = 2.
Explanation:
Given equations
3x + y = 1 ......(1)
(2k – 1)x + (k – 1)y = 2k + 1 ......(2)
3x + y = 1
Comparing with a1x + b1y + c1 = 0
∴ a1 = 3, b1 = 1, c1 = 1
(2k – 1)x + (k – 1)y = 2k + 1
Comparing with a2x + b2y + c2 = 0
∴ a2 = (2k – 1), b2 = (k – 1), c2 = (2k + 1)
Now,
`a_1/a_2 = 3/((2k - 1))`
`b_1/b_2 = 1/((k - 1))`
`c_1/c_2 = 1/((2k + 1))`
Since equations are inconsistent.
It means that the lines are parallel.
`a_1/a_2 = b_1/b_2 ≠ c_1/c_2`
`3/((2k - 1)) = 1/((k - 1)) ≠ 1/((2k + 1))`
Thus,
`3/((2k - 1)) = 1/((k - 1))`
3(k – 1) = (2k – 1)
3k – 3 = 2k – 1
3k – 2k = –1 + 3
k = 2