English

If the system of equations 3x + y = 1 and (2k – 1)x + (k – 1)y = 2k + 1 is inconsistent, then k = ______. - Mathematics

Advertisements
Advertisements

Question

If the system of equations 3x + y = 1 and (2k – 1)x + (k – 1)y = 2k + 1 is inconsistent, then k = ______.

Options

  • –1

  • 0

  • 1

  • 2

MCQ
Fill in the Blanks

Solution

If the system of equations 3x + y = 1 and (2k – 1)x + (k – 1)y = 2k + 1 is inconsistent, then k = 2.

Explanation:

Given equations

3x + y = 1 ......(1)

(2k – 1)x + (k – 1)y = 2k + 1 ......(2)

3x + y = 1

Comparing with a1x + b1y + c1 = 0

∴ a1 = 3, b1 = 1, c1 = 1

(2k – 1)x + (k – 1)y = 2k + 1

Comparing with a2x + b2y + c2 = 0

∴ a2 = (2k – 1), b2 = (k – 1), c2 = (2k + 1)

Now, 

`a_1/a_2 = 3/((2k - 1))`

`b_1/b_2 = 1/((k - 1))`

`c_1/c_2 = 1/((2k + 1))`

Since equations are inconsistent.

It means that the lines are parallel.

`a_1/a_2 = b_1/b_2 ≠ c_1/c_2`

`3/((2k - 1)) = 1/((k - 1)) ≠ 1/((2k + 1))`

Thus,

`3/((2k - 1)) = 1/((k - 1))`

3(k – 1) = (2k – 1)

3k – 3 = 2k – 1

3k – 2k = –1 + 3

k = 2

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Standard Sample

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×