Advertisements
Advertisements
Question
If U = `e^(xyz) f((xy)/z)` prove that `x(delu)/(delx)+z(delu)/(delx)2xyzu` and `y(delu)/(delx)+z(delu)/(delz)=2xyzu` and hence show that `x(del^2u)/(delzdelx)=y(del^2u)/(delzdely)`
Solution
U = `e^(xyz) f((xy)/z)`
`(delu)/(delx)=e^(xyz)[f'((xy)/z)xxy/z]+f((xy)/z)[e^(xyz)xxxy]`
`x(delu)/(delx)=e^(xyz)[(xy)/zf'((xy)/z)+xyz f((xy)/z)]`……………. (1)
`(delu)/(dely)=e^(xyz)[f'((xy)/z)xxx/z]+f((xy)/z)[e^(xyz) xx xz]`
`y(delu)/(dely)e^(xyz)[(xy)/zf'((xy)/z)+xyz f((xy)/z)]`……………….. (2)
`(delu)/(delz)=e^(xyz)[f'((xy)/z)xxy/z^2]+f((xy)/z)[e^(xyz)xxxy]`
`z(delu)/(delz)=e^(xyz)[-(xy)/zf'((xy)/z)+xyz f((xy)/z)]`……………….. (3)
Adding 1 and 3, we get
`x(delu)/(delx)+z(delu)/(delz)=2e^(xyz) xyz f((xy)/z)=2xyzu`
Adding 2 and 3, we get
`y(delu)/(dely)+z(delu)/(delz)=2e^(xyz) xyz f((xy)/z)=2xyzu`
For deduction,
`x(delu)/(delx)+z(delu)/(delz)=2xyzu`
Diff w.r.t z
`x(del^2u)/(delzdelx)+[z(del^2u)/(delz)+(delu)/(delz)(1)]=2xy[z(delu)/(delz)+u(1)]`
`x(del^2u)/(delzdelx)=(2xyz-)(delu)/(delz)-z(del^2u)/(delz^2)+2xyu`……………. (4)
Similarly,
`y(delu)/(dely)+z(delu)/(delz)=2xyzu`
Diff w.r.t z and solving, we get
`y(del^2u)/(delydelz)=(2xyz-1)(delu)/(delz)-z(del^2u)/(delz^2)+2xyu`…………….. (5)
∴ From 4 and 5, we get
`x(del^2u)/(delzdelx)=y(del^2u)/(delzdely)`