Advertisements
Advertisements
Question
If x is a positive integer such that the distance between points P (x, 2) and Q (3, −6) is 10 units, then x =
Options
3
-3
9
-9
Solution
It is given that distance between P (x, 2) and Q(3 , - 6 ) is 10.
In general, the distance between A(x1 , y 1 ) and B (x2 , y2) is given by,
`AB^2 = ( x_2-x_1)^2 + (y_2 - y_1)^2`
So,
`10^2 = (x - 3)^2 + (2 + 6)^2`
On further simplification,
`(x - 3)^2 = 36 `
` x = 3 +- 6`
`= 9 - 3`
We will neglect the negative value. So,
x = 9
APPEARS IN
RELATED QUESTIONS
Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when The centre of the square is at the origin and coordinate axes are parallel to the sides AB and AD respectively.
Which point on the y-axis is equidistant from (2, 3) and (−4, 1)?
Find the points of trisection of the line segment joining the points:
(3, -2) and (-3, -4)
If the point P (2,2) is equidistant from the points A ( -2,K ) and B( -2K , -3) , find k. Also, find the length of AP.
Find the area of quadrilateral PQRS whose vertices are P(-5, -3), Q(-4,-6),R(2, -3) and S(1,2).
Points (−4, 0) and (7, 0) lie
The ordinate of any point on x-axis is
The perpendicular distance of the P (4,3) from y-axis is
If the point P(x, 3) is equidistant from the point A(7, −1) and B(6, 8), then find the value of x and find the distance AP.
Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.
In \[∆\] ABC , the coordinates of vertex A are (0, - 1) and D (1,0) and E(0,10) respectively the mid-points of the sides AB and AC . If F is the mid-points of the side BC , find the area of \[∆\] DEF.
If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]
Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).
Find the coordinates of point A, where AB is a diameter of the circle with centre (–2, 2) and B is the point with coordinates (3, 4).
If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______
If the sum of X-coordinates of the vertices of a triangle is 12 and the sum of Y-coordinates is 9, then the coordinates of centroid are ______
Point (0, –7) lies ______.
Assertion (A): The ratio in which the line segment joining (2, -3) and (5, 6) internally divided by x-axis is 1:2.
Reason (R): as formula for the internal division is `((mx_2 + nx_1)/(m + n) , (my_2 + ny_1)/(m + n))`
Co-ordinates of origin are ______.
The distance of the point (3, 5) from x-axis (in units) is ______.