Advertisements
Advertisements
Question
If y = f(x) is a differentiable function of x such that inverse function x = f–1 (y) exists, then prove that x is a differentiable function of y and `dx/dy=1/((dy/dx)) " where " dy/dx≠0`
Solution 1
Let `delta`y be the increment in y corresponding to an increment `delta`x in x.
as `deltax->0,deltay->0`
Now y is a differentiable function of x.
`therefore lim_(deltax->0)(deltay)/(deltax)=dy/dx`
Now `(deltay)/(deltax)xx(deltax)/(deltay)=1`
`therefore (deltax)/(deltay)=1/((deltay)/(deltax))`
Taking limits on both sides as `deltax->0, we get`
`lim_(deltax->0)(deltax)/(deltay)=lim_(deltax->0)[1/((deltay)/(deltax))]=1/(lim_(dx->0)(deltay)/(deltax))`
`lim_(deltax->0)(deltax)/(deltay)=1/(lim_(dx->0)(deltay)/(deltax))` ....[as `deltax->0,deltay->0`]
Since limit in R.H.S. exists
limit in L.H.S. also exists and we have,
`lim_(deltay->0)(deltax)/(deltay)=dx/dy`
`dx/dy=1/(dy/dx)`, where `dy/dxne0`
Let `y=tan^-1x`
`x=tany=>cosy=1/sqrt(1+tan^2y)=1/sqrt(1+x^2)`
`therefore sec^y.dy/dx=1=>dx/dy=sec^2y`
`dy/dx=1/(dx/dy)=1/sec^2y=cos^2y=>dy/dx=cos^y`
`(d(tan^-1x))/dx=cos^2y=(cosy)^2=(1/sqrt(1+x^2))^2`
`therefore d/dx(tan^-1x)=1/(1+x^2)`
Solution 2
'y’ is a differentiable function of ‘x’.
Let there be a small change δx in the value of ‘x’.
Correspondingly, there should be a small change δy in the value of ‘y’.
As δx → 0, δy → 0
RELATED QUESTIONS
If `y=cos^-1(2xsqrt(1-x^2))`, find dy/dx
Find `dy/dx if y=cos^-1(sqrt(x))`
find dy/dx if `y=tan^-1((6x)/(1-5x^2))`
If `y=sec^-1((sqrtx-1)/(x+sqrtx))+sin_1((x+sqrtx)/(sqrtx-1)), `
(A) x
(B) 1/x
(C) 1
(D) 0
If y = f (x) is a differentiable function of x such that inverse function x = f –1(y) exists, then
prove that x is a differentiable function of y and
`dx/dy=1/(dy/dx)`, Where `dy/dxne0`
Hence if `y=sin^-1x, -1<=x<=1 , -pi/2<=y<=pi/2`
then show that `dy/dx=1/sqrt(1-x^2)`, where `|x|<1`
Find `dy/dx` if `y = tan^(-1) ((5x+ 1)/(3-x-6x^2))`
If `x^y = e^(x - y)` , show that `(dy)/(dx) = logx/(1 + logx)^2`
If `x^y = e^(x - y)` , show that `(dy)/(dx) = logx/(1 + logx)^2`
The total cost function of a firm is C = x2 + 75x + 1600 for output x. Find the output for which the average cost ls minimum. Is CA= Cm at this output?