English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 11

If y = (x+1+x2)m, then show that (1 + x2) y2 + xy1 – m2y = 0 - Business Mathematics and Statistics

Advertisements
Advertisements

Question

If y = `(x + sqrt(1 + x^2))^m`, then show that (1 + x2) y2 + xy1 – m2y = 0

Sum

Solution

y = `(x + sqrt(1 + x^2))^"m"`

`y_1 = "m"(x + sqrt(1 + x^2))^("m"-1) {1 + (2x)/(2sqrt(1 + x^2))}`

`= "m" (x + sqrt(1 + x^2))^("m" - 1){(sqrt (1+ x^2) + x)/(sqrt(1 + x^2))} = ("m"(x + sqrt(1 + x^2))^"m")/(sqrt(1 + x^2))`

`y_1 = "my"/sqrt(1 + x^2)`

Squaring both sides we get,

`y_1^2 = ("m"^2y"^2)/(1 + x^2)`

(1 + x2) `(y_1^2) = m2y2`

Differentiating with respect to x, we get

(1 + x2) . 2(y1) (y2) + (y1)2 (2x) = 2m2yy1

Dividing both sides by 2y1 we get,

(1 + x2) y2 + xy1 = m2y

⇒ (1 + x2) y2 + xy1 – m2y = 0

shaalaa.com
Differentiation Techniques
  Is there an error in this question or solution?
Chapter 5: Differential Calculus - Exercise 5.9 [Page 123]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 11 TN Board
Chapter 5 Differential Calculus
Exercise 5.9 | Q 5 | Page 123
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×