Advertisements
Advertisements
Question
If y=(x+√x2-1 ,Prove that
`(x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0`
Sum
Solution
`y+(x+sqrtx^2-1)^m`
taking + sign before the radical
`thereforey_1=m[(x+sqrtx^2-1)^(m-1)].[1+x/(sqrtx^2-1)]`
`=m(x+sqrtx^2-1)^m.x/(sqrtx^2-1)=(my)/(sqrtx^2-1)`
`sqrtx^2-1.y_1=my`
Differentiating again w.r.t x,
`sqrtx^2-1.y_2+x/(sqrtx^2-1)y_1=my_1`
`(x^2-1)y_2+xy_1=msqrtx^2-1.y_1=m. my=my^2`
`(x^2-1)y_2+xy_1-my^2=0`
Hence after applying lebnitz’s theorem we get,
`(x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0`
shaalaa.com
Leibnitz’S Theorem (Without Proof) and Problems
Is there an error in this question or solution?