Advertisements
Advertisements
Question
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term.
Solution
Given, t4 = 48, t8 = 768
tn = arn–1
∴ t4 = ar3
∴ ar3 = 48 ...(i)
and ar7 = 768 ...(ii)
Equation (ii) ÷ equation (i), we get
`"ar"^7/"ar"^3 = 768/48`
∴ r4 = 16
∴ r = 2
Substituting r = 2 in (i), we get
a.(23) = 48
∴ a = 6
∴ t10 = ar9
∴ t10 = ar9
= 6(29)
= 3072.
APPEARS IN
RELATED QUESTIONS
Which term of the G. P. 5, 25, 125, 625, … is 510?
Find three numbers in G. P. such that their sum is 21 and sum of their squares is 189.
Find four numbers in G. P. such that sum of the middle two numbers is `10/3` and their product is 1.
The fifth term of a G. P. is x, eighth term of the G. P. is y and eleventh term of the G. P. is z. Verify whether y2 = xz.
Find 2 + 22 + 222 + 2222 + … upto n terms.
Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, …
If for a sequence, `t_n = (5^(n- 3))/(2^(n - 3))`, show that the sequence is a G.P.
Find its first term and the common ratio.
For the G.P. if a = `2/3` t6 = 162, find r.
Express the following recurring decimals as a rational number.
`4.bar18`
For the G.P. if a = `2/3`, t6 = 162, find r.
For the G.P. if a = `2/3`, t6 = 162, find r.
Verify whether the following sequences are G.P. If so, find tn.
`sqrt5, 1/sqrt5, 1/(5sqrt5), 1/(25sqrt5), ...`
For the G.P. if a = `2/3` , t6 = 162 , find r
For the G.P. If a = `2/3, t_6 = 162,` find r