Advertisements
Advertisements
Question
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
Solution
S1 = 1 + 2 + 3 + ... + n = \[\displaystyle\sum_{r=1}^{n}\frac{n(n+1)}{2}\]
S2 = 12 + 22 + 32 + ... n2 = \[\displaystyle\sum_{r=1}^{n}\frac{n(n + 1)(2n + 1)}{6}\]
S3 = 13 + 23 + 33 + ... + n3 = `sum_("r" = 1)^"n""r"^3 = ("n"^2 ("n" + 1)^2)/4`
R.H.S. = S3(1 + 8S1)
= `("n"^2("n" + 1)^2)/4[1 + 8*("n"("n" + 1))/4]`
= `("n"^2("n" + 1)^2)/4(1 + 4"n"^2 + 4"n")`
= `("n"^2("n" + 1)^2)/4(2"n" + 1)^2`
= `(9."n"^2("n" + 1)^2 (2"n" + 1)^2)/36`
= `9[("n"("n" + 1)(2"n" + 1))/6]^2`
= 9S22
= L.H.S.
APPEARS IN
RELATED QUESTIONS
Find the sum `sum_("r" = 1)^"n"("r" + 1)(2"r" - 1)`.
Find `sum_("r" = 1)^"n" (1^3 + 2^3 + ... + "r"^3)/("r"("r" + 1)`.
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find (702 – 692) + (682 – 672) + ... + (22 – 12)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1xx2 + 2xx 3 + 3xx4 + 4xx5 + ...+"upto n terms")/(1 + 2 + 3 + 4 + ...+"upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find `sum_(r = 1)^n (1 + 2 + 3 + ... + r)/(r)`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Express the recurring decimal as a rational number.
3.4`bar56`
Find `sum_(r=1)^n (1+2+3+......+r)/r`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find `\underset{r=1}{\overset{n}{sum}} (1 + 2 + 3 +... + r)/(r)`