Advertisements
Advertisements
प्रश्न
If S1, S2 and S3 are the sums of first n natural numbers, their squares and their cubes respectively, then show that: 9S22 = S3(1 + 8S1).
उत्तर
S1 = 1 + 2 + 3 + ... + n = \[\displaystyle\sum_{r=1}^{n}\frac{n(n+1)}{2}\]
S2 = 12 + 22 + 32 + ... n2 = \[\displaystyle\sum_{r=1}^{n}\frac{n(n + 1)(2n + 1)}{6}\]
S3 = 13 + 23 + 33 + ... + n3 = `sum_("r" = 1)^"n""r"^3 = ("n"^2 ("n" + 1)^2)/4`
R.H.S. = S3(1 + 8S1)
= `("n"^2("n" + 1)^2)/4[1 + 8*("n"("n" + 1))/4]`
= `("n"^2("n" + 1)^2)/4(1 + 4"n"^2 + 4"n")`
= `("n"^2("n" + 1)^2)/4(2"n" + 1)^2`
= `(9."n"^2("n" + 1)^2 (2"n" + 1)^2)/36`
= `9[("n"("n" + 1)(2"n" + 1))/6]^2`
= 9S22
= L.H.S.
APPEARS IN
संबंधित प्रश्न
Find \[\displaystyle\sum_{r=1}^{n} (3r^2 - 2r + 1)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ... + r}{r}\]
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find \[\displaystyle\sum_{r=1}^{n}(5r^2 + 4r - 3)\].
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^2 + 2^2 + 3^2+...+r^2}{2r + 1}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find 122 + 132 + 142 + 152 + … + 202.
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1xx2 + 2xx3 + 3xx4 + 4xx5 + .....+ "upto n terms") / (1 + 2 + 3 + 4 + .....+"upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...... + "upto n terms")/(1 + 2 + 3 + 4 + ....+ "upto n terms") = 100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`
Find `sum_(r=1)^n (1 + 2 + 3 + --- +r)/r`
Find `sum_(r=1)^n(1+2+3+...+r)/r`
Find `sum_(r=1)^n (1 + 2 + 3 + ... + r)/r`
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find n, if `(1 xx 2 + 2 xx3+3xx4+4xx5+... +"upto n terms")/(1+2+3+4+...+ "upto n terms") = 100/3`.