Advertisements
Advertisements
प्रश्न
Find the sum 5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms.
उत्तर
5 × 7 + 9 × 11 + 13 × 15 + ... upto n terms
Now, 5, 7, 9, 11, … are in A.P.
rth term = 5 + (r – 1) (2) = 2r + 3
7, 9, 11, .… are in A.P.
rth term = 7 + (r – 1) (2) = 2r + 5
∴ 5 × 7 + 7 × 9 + 9 × 11 × 13 + ... upto n terms
= \[\displaystyle\sum_{r=1}^{n} (2r + 3)(2r + 5)\]
= \[\displaystyle\sum_{r=1}^{n}4r^2 + 16r + 15\]
= 4\[\displaystyle\sum_{r=1}^{n} r^2 + 16 \displaystyle\sum_{r=1}^{n} r + 15 \displaystyle\sum_{r=1}^{n} 1\]
= `4[(n(n + 1) (2n + 1)) /6] + 16 [(n(n + 1))/2] 15 n`
= `"n"/3[2(2"n"^2 + 3"n" + 1) + 24("n" + 1) + 45]`
= `"n"/3(4"n"^2 + 6"n" + 2 + 24"n" + 24 + 45)`
= `"n"/3(4"n"^2 + 30"n" + 71)`
APPEARS IN
संबंधित प्रश्न
Find the sum 22 + 42 + 62 + 82 + ... upto n terms.
Find the sum 1 x 3 x 5 + 3 x 5 x 7 + 5 x 7 x 9 + ... + (2n – 1) (2n + 1) (2n + 3)
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms")= 100/3`.
Find \[\displaystyle\sum_{r=1}^{n}\frac{1^3 + 2^3 + 3^3 +...+r^3}{(r + 1)^2}\]
Find 2 x + 6 + 4 x 9 + 6 x 12 + ... upto n terms.
Find 122 + 132 + 142 + 152 + … + 202.
Find (502 – 492) + (482 –472) + (462 – 452) + .. + (22 –12).
Find `sum_(r=1)^n (1+2+3+... + "r")/"r"`
Find n, if `(1xx2+2xx3+3xx4+4xx5+.......+ "upto n terms")/(1+2+3+4+....+ "upto n terms") =100/3`
Find n, if `(1 × 2 + 2 × 3 + 3 × 4 + 4 × 5 + ...+ "upto n terms")/(1 + 2 + 3 + 4 + ...+ "upto n terms") = 100/3`
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`.
Find `sum_(r=1)^n (1+2+3+...+r)/r`
Find \[\displaystyle\sum_{r=1}^{n}\frac{1 + 2 + 3 + ...+ r}{r}\]
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/(1 + 2 +3 + 4 + ...+ "upto n terms") = 100/3`.
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3`
Find `sum _(r=1)^(n) (1 + 2 + 3 + ... + r)/r`
Find n, if `(1xx2+2xx3+3xx4+4xx5+...+"upto n terms")/(1+2+3+4+...+"upto n terms")=100/3 . `
Find n, if `(1 xx 2 + 2 xx 3 + 3 xx 4 + 4 xx 5 + ... + "upto n terms")/ (1 + 2 + 3 + 4 + ... + "upto n terms") = 100/3`